Investigating curing-induced internal stress in epoxy coatings

A recent article describes the effects of epoxy binder, curing agent, filler, initial solvent concentration, curing temperature, and relative humidity, on the curing-induced internal stress in epoxy coatings.

According to the report, curing-induced internal stresses in epoxy coatings are highly influenced by the type and concentration of their ingredients, and the conditions applied. In this new work, the effects on the internal stress development of the epoxy/crosslinker chemistry, curing temperature, relative humidity, filler conditions, and initial solvent concentration, were studied. An elevated curing temperature (35 or 45 °C) resulted in a smaller elastic modulus and, despite an accelerated curing reaction and a higher final reactant conversion, only a slight increase, around 0.2 MPa, in the average internal stress. An increased relative humidity (from 35 to 60 %), also resulted in a smaller elastic modulus and less volumetric shrinkage and internal stress. However, at 90 % relative humidity, the internal stress, due to an enhanced final reactant conversion, was higher than observed at 60 % RH.

The study noted that the presence of either BaSO4 or CaCO3 filler in the formulation reduced the final reactant conversion and volumetric shrinkage, but resulted in a higher elastic modulus and internal stress. 0.6 MPa.

The study presents guidelines to optimise coating formulations and curing conditions to avoid internal stress.

The study was published in Progress in Organic Coatings, Volume 173, December 2022.

Follow us on social media

General Enquiries

Institute of Corrosion
Corrosion House
5 St Peters Gardens
Marefair
Northampton
NN1 1SX

tel: + 44 (0)1604 438222
e-mail: admin@icorr.org

Related News

ICorr MIC Training Course for 2023

ICorr MIC Training Course for 2023

ICorr Microbiologically Influenced Corrosion (MIC) Training Course Plan for 2023 The Institute of Corrosion (ICorr) is pleased to announce the plan for the MIC training course for 2023. Both the Awareness and Certified MIC Technologist proficiency levels are offered,...

President Handover –  Bill Hedges to Stephen Tate

President Handover – Bill Hedges to Stephen Tate

The Institute of Corrosion is very pleased to announce the successful election of Stephen Tate as its New President and Dr Yunnan Gao as its New Vice President. Stephen has worked with Aberdeen Branch Committee for the past 11 yrs in various roles and has twice been...

New ICorr MIC Training Course Available

New ICorr MIC Training Course Available

The Institute of Corrosion (ICorr) is delighted to announce that we have developed a Microbiologically Influenced Corrosion (MIC) course to meet the increasing demand from industry. MIC is the least understood phenomenon of corrosion despite the number of high-profile...