AGENDA

• Development of Crevcorr crevice former
• HISC – Hydrogen Induced Stress Cracking of duplex stainless steels
CREVCORR
CREVCORR

• The working party "Marine corrosion" in EFC had performed two round robins testing programs and one EU funded project for crevice corrosion testing in seawater
 – The reproducibility was bad
 – The results did not correspond to service practice
 • 316L did not experience crevice corrosion in all testing
• An EU funded project were initiated in the working party – Crevcorr
 – One task was to develop crevice corrosion testing techniques for stainless steels – both for flat and curvature specimens
DISC SPRING LOADING

SPECIMEN DESIGN

- Using disc springs to control the crevice gap gives good reproducibility

- Use of PVDF for the crevice former
 - PTFE deforms during loading
 - PTFE relaxes at higher temperatures
 - PVDF is suitable as crevice former up to at least 90°C
IMPROVED RESULT

RESULTS FROM 6 MONTHS AMBIENT TEMPERATURE SEAWATER TEST PROGRAMS FOR 316L

- Experiences shows that 316L is prone for crevice corrosion in ambient seawater
- Improved prediction with the Crevcorr set up

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>EFC Test I</th>
<th>EFC Test II</th>
<th>MAST test</th>
<th>Crevcorr test</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNV, Norway</td>
<td>0/4</td>
<td>0/4</td>
<td>-</td>
<td>3/3</td>
</tr>
<tr>
<td>CEA, France</td>
<td>3/4</td>
<td>4/4</td>
<td>5/5</td>
<td>3/3</td>
</tr>
<tr>
<td>CTO, Poland</td>
<td>2/4</td>
<td>3/4</td>
<td>-</td>
<td>3/3</td>
</tr>
<tr>
<td>ICMM, Italy</td>
<td>-</td>
<td>-</td>
<td>5/5</td>
<td>3/3</td>
</tr>
<tr>
<td>Helsinki Uni., Finland</td>
<td>0/4</td>
<td>0/4</td>
<td>-</td>
<td>3/3</td>
</tr>
</tbody>
</table>

T. Ronge, EFC Publication no 60, 2010, pp. 67-87
TUBULAR TEST SPECIMENS

SPECIMEN DESIGN

- Based on the Crevcorr set-up for flat specimens
- Curvature crevice formers with the same radius as the tube
- The applied clamping force must be adjusted in order to have constant pressure
 - Based on FEM-modeling in order to have similar pressure as for flat specimens

\[y = 251.51 \ln(x) - 216.39 \]
\[R^2 = 0.9943 \]

U. Kivisäkk, EFC Publication no 60, 2010, pp. 21-29
ISO 18070

CREVICE FORMER DEVELOPED IN CREVCORR

• Based on the work in Crevcorr standardisation within ISO were initiated for the developed crevice former

• In 2015 publication of ISO 18070 was made
HISC OF DUPLEX
INTRODUCTION

• Failures due to hydrogen induced stress cracking (HISC) have occurred
• Occurs when subject to both cathodic protection and tensile load
• The failures of duplex stainless steels have in common
 – Coarse material, austenite spacing above 30 µm
 – Involvement of plastic deformation
MATERIAL

• Two product forms
 – Extruded tube - austenite spacing of 10 µm
 – Bar material - austenite spacing of 42 µm

<table>
<thead>
<tr>
<th>Grade</th>
<th>UNS</th>
<th>C</th>
<th>Cr</th>
<th>Ni</th>
<th>Mo</th>
<th>N</th>
<th>PRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandvik SAF 2507</td>
<td>S32750</td>
<td><0.03</td>
<td>25</td>
<td>7</td>
<td>4</td>
<td>0.3</td>
<td>>42.5</td>
</tr>
</tbody>
</table>
RESULTS FROM HISC-TESTING

MAXIMUM TESTED LOAD WITHOUT CRACKING

Percentage of the yield strength ($R_{p0.2}$)
INHOMOGENOUS DEFORMATION OF DUPLEX STAINLESS STEELS

- At 90% of the yield strength, austenite is softer than the ferrite.
- The deformation takes place in the austenite.
- In order to have the same strain, the ferrite creeps, dislocations are generated.
- The coarse duplex experiences creep but not the tube with small austenite spacing at 90% of the yield strength.
EBSD for HISC-tested specimens at 90% Rp_{0.2}

TUBE: NO LOW ANGLE GRAIN BOUNDARIES IN FERRITE

BAR: MANY LOW ANGLE GRAIN BOUNDARIES IN FERRITE

White lines represent low angle grain boundaries with dislocations

Ferrite = Blue

Austenite = Red
PROPOSED MECHANISM FOR HYDROGEN INDUCED STRESS CRACKING IN A TWO PHASED MATERIAL
CONCLUSIONS

• Reproducible crevice corrosion test procedures for stainless steels in seawater have been developed and consistent results between laboratory testing and field testing has been achieved

• The crevice forming technology has been standardised in ISO 18070

• A mechanism for HISC on duplex stainless steels subject to cathodic protection based on inhomogeneous deformation has been proposed

• The mechanism explains why coarse material cracks when duplex with fine microstructure don’t
ACKNOWLEDGMENTS

- Co workers at Sandvik Materials Technology
- Project members of Crevcorr
- Members of EFC working party “Marine Corrosion”
- Dr Marie Sparr at Swerea KIMAB of standardisation of crevice former