ICorr Aberdeen Branch Welcomes

Introduction to Oilfield Microbiology

Presented By Dr Carol Devine,
Consultant Microbiologist

ICR. Integrity Monitoring Business Unit
ICR is committed to delivering smarter integrated solutions to support clients with maintenance and integrity related challenges.

We provide a wide range of products, services and technologies all of which support safe operations, production uptime and operational cost efficiency at every stage of the asset lifecycle with a particular focus on preservation, inspection and repair.

Integrated solutions include:

- Weldless connections
- Chemical Injection solutions
- Specialist Onsite Machining
- Integrity Monitoring
- Engineered Composite Repairs
ICR. JOURNEY

2009
- JUNE: Walker Technical management buy-in

2011
- JULY: Formation of ICR Integrity Ltd
- OCTOBER: Acquisition of NECE

2012
- AUGUST: JV in Australia - IC Integrity
- Acquisition of MOSS
- NOVEMBER: Creation of ICR Gulf
- DECEMBER: Acquisition of CIU

2014
- OCTOBER: Acquisition of Quickflange

2016
- JUNE: ICR Integrity Ltd becomes legal trading entity

2017
- OCTOBER: ICR Norway formed
ICR. INTEGRITY AND MAINTENANCE SOLUTIONS

- Chemical Injection Solutions
- Specialised Machining Solutions
- Integrity Monitoring Solutions
- Weldless Connection Solutions
- Engineered Composite Solutions
Weld-less Connection

- Patented, permanent pipe-to-flange connection
- Site technicians and training
- Localised joint testing
- Size and pressure ratings for most applications
- No hot work required

Chemical Injection

- Specialist provider of chemical injection and metering pump units and associated equipment
- Equipment rental and sales
- Maintenance and repair
- Extensive rental fleet
- Bespoke engineered solutions
- Offshore services

Engineered Machining

- Hydraulic bolt tensioning
- Cold repair system - No hot work
- Spark erosion services
- Engineering support

Integrity Monitoring

- Corrosion monitoring
- Oilfield microbiology
- Thermography
- Chemical monitoring
- Sand monitoring
- Data management
- Optical gas detection

Composite Engineering

- Cold repair systems and no hot work required
- Application to live systems with no impact on production
- Exceptional strength and adaptability
- Long term alternative to steel replacement

Composite repair solutions for a wide range of pipework, pipeline and structural integrity issues.
Dr CAROL DEVINE,
CONSULTANT MICROBIOLOGIST

- BSc in Microbiology, University of Aberdeen
- PhD in Subsurface Molecular Microbial Ecology
- Commercial Microbiology - Intertek for 11 years
- **ICR.** (formerly NECE) for 6 years
• Introduction to Oilfield Microbiology
• Microbiological Issues
• Systems
• Samples
• Analytical Techniques
• Data Trending
CORROSION AWARENESS DAY 2017

Legend:
1. Crude Oil: Souring/Corrosion
2. Pipeline: Corrosion
3. Crude Oil: Corrosion
4. Diesel Oil: Contamination/Corrosion
5. Lubricating Oil: Contamination
7. Crude Oil: H₂S Gas/H₂SO₄
8. Production System: Corrosion
9. Water Injection System: Corrosion
10. Water Filled Leg: H₂S Gas/Corrosion
11. Drilling Mud: Corrosion/Seabed Pollution
12. Oil Spills: Microbial Breakdown
13. M.E.O.R
14. Souring/Plugging
15. Down Hole: Corrosion
16. Fuel Oil: Acid Corrosion

P. Sanders et al.
CORROSION AWARENESS DAY 2017
MICROBIAL ISSUES

- Biofouling
- Reservoir souring
- Microbiologically influenced corrosion (MIC)

MITIGATION STRATEGIES

- Biofouling – filtration, chlorination and biociding
- Sourcing – above plus sulphate removal or nitrate injection
- MIC – filtration, chlorination, biociding – and pigging
The aim of the oilfield microbiologist is to generate useful and appropriate data in order to:

- **Predict** which particular systems, vessels, pipelines, locations are under threat from microbiologically influenced corrosion (MIC)

- **Prioritise** areas for treatment according to budget and time available

- **Apply** and monitor appropriate strategies to mitigate against the effects of MIC
• Production
• Water Injection
• Produced Water Reinjection (PWRI)
• Ballast water
• Seawater Cooling
• Cooling/heating
• Firewater
• Diesel storage and distribution
Two main types of samples:

Planktonic – water, crude, diesel, cooling medium

Sessile – biofilm from coupons, bio-sidestreams and/or other intrusive devices
SESSILE SAMPLES - COUPONS

Direct system exposure

Sessile Microbial Samples and Weight Loss analysis
FLUSH DISC & STRIP COUPONS
3” STRIP COUPONS
BIOFILM GROWTH & DISPERSION

1. Adsorption
2. Irreversible attachment
3. Growth and division
4. Planktonic bacteria
5. Extracellular polymeric substance ("slime")
6. Mature microcolony formation
7. Signal molecules
8. Chemoattraction
9. Dispersion
10. Multispecies consortia
Production

Originally clean - but now contaminated with indigenous reservoir microorganisms, plus contamination from injected seawater and from chemicals injected over the years. Those microbes most suited to the environment will proliferate.

Seawater Injection

High levels of microbes and macrobes in seawater from psychrophiles to extreme thermophiles. Main control regime is chlorination, with filtration and organic biocide treatments downstream of the D/A. Poor water quality means a high threat of corrosion with high populations of a diverse microflora being injected into the reservoir = accelerated reservoir souring.
DEAERATOR – POOR WATER QUALITY
ALGAL BLOOM, SCOTTISH COAST
Choice depends on what you are looking for – and on the budget!

Three groups of microbes – **archaea**, **bacteria** and **eukaryotes**

MIC is a highly complex microbial process which is thought to involve:

- sulphate-reducing bacteria
- sulphate-reducing archaea
- methanogens
- acid-producing general heterotrophic bacteria (APB)
- iron utilising bacteria
- (general heterotrophic bacteria)
1. Triplicate MPNs

- Can detect a variety of active microbes
- Can be performed in field by trained personnel
- Vast body of historic data

- Media must match the conditions of the environment the sample comes from i.e., temperature and salinity
- Detects less than 5% of the total community
- SRB incubation period is 28 days
2. Plate counts

- Can detect a variety of active microbes
- Difficult to perform in the field/offshore as plates do not travel well
- Need sterile anaerobic chambers to incubate plates for anaerobic bacteria
- Routinely used for diesel analysis, potable water monitoring and Legionella counts
1. qPCR

- A laboratory technique based on the polymerase chain reaction
- Used to amplify and simultaneously quantify a targeted DNA molecule
- The cells are lysed and a chemical reaction set up where the DNA is amplified exponentially
- A DNA-binding dye binds to all double-stranded (ds)DNA in the PCR reaction, causing fluorescence of the dye
- An increase in DNA product therefore leads to an increase in fluorescence
- Allows DNA concentrations to be quantified and the number of cells present in the original sample to be estimated.
qPCR - AMPLIFICATION
2. FISH

- A laboratory technique based on fluorescent microscopy
- Sample is fixed on site and fixative must be fresh
- In the lab, a DNA dye called DAPI, is added to give a ‘Total Cell Count’
- A DNA probe (a short section of nucleic acid labelled with a fluorescent dye) is added and hybridised to the nucleic acid in the target bacteria
- The cells are viewed under a UV microscope
FLUORESCENT IN-SITU HYBRIDISATION (FISH)
• Application of New Generation Sequencing to characterise the total microbial community

• Identifies all micro-organisms
ATP TESTING

• Tests for actively growing cells
• ATP (adenosine triphosphate) plus Luciferase = light
• Results in relative light units is proportional to the quantity of ATP
• Non specific test designed for clean systems
Advantages (over traditional methods for bacterial enumeration)

- Speed
- Accuracy
- Picks up viable non-culturable cells and archaea
- Can determine which genera and species of bacteria are present
- Relatively easy to take, preserve and ship samples

Disadvantages

- Accuracy
- Cost
- Has to be carried out in the lab
- Samples should be kept chilled during shipping
- Cannot be carried out by offshore chemists (need skilled technicians and expensive equipment)
Testing for:
sulphate-reducing prokaryotes (SRB)
general heterotrophs
acid-producing bacteria
nitrite-reducing bacteria
bacteria and fungi in diesels
nitrate-reducing bacteria

sulphate-reducing archaebacteria (SRA)
archaebacteria
methanogens

Techniques:
traditional viable counts (MPNs)
molecular techniques – qPCR, FISH, DAPI,

Chemistry:
pH, sulphide, bisulphite, Volatile Fatty Acids (VFAs),
chlorine residuals, total iron, nitrite, nitrate etc
<table>
<thead>
<tr>
<th>WORKSCOPE</th>
<th>Current status</th>
<th>Actions required</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCTION</td>
<td>Moderate to high planktonic SRB, low to moderate sessile SRB with low corrosion and moderate pitting rates. Risk of MIC.</td>
<td>Regular kill dose of biocide required. Post biocide planktonic samples should sent in for analysis.</td>
</tr>
<tr>
<td>WATER TREATMENT VESSELS</td>
<td>Moderate thermophilic SRB at Vessel B water outlet, low numbers at the remaining locations. Low sulphide levels. SRB growth and activity still occurring across vessels with a high risk of MIC.</td>
<td>Close monitoring required as early intervention may be required to ensure control is maintained.</td>
</tr>
<tr>
<td>DRAINS</td>
<td>Low thermophilic SRB in Closed Drains, moderate sulphide levels measured. Low risk of contamination being recirculated and of MIC</td>
<td>No immediate action currently required. Regular monitoring should be maintained.</td>
</tr>
<tr>
<td>WATER INJECTION</td>
<td>Low planktonic and sessile SRB numbers, sulphide levels below detection limit. Moderate to high corrosion and pitting rates. Risk of microbial proliferation and MIC</td>
<td>System currently under reasonable control. Further investigations required to determine the cause of the high pitting measured at CC-XOX-017. The use of molecular techniques such as qPCR should be used to confirm or eliminate the role of MIC.</td>
</tr>
<tr>
<td>DIESEL SYSTEM</td>
<td>Low aerobic bacteria, yeast and mould enumerated from all the tanks sampled. Low particulate contamination, fungal fragments and water content.</td>
<td>No immediate action is required as the diesel tanks are currently under good control and water content is at a minimum. Regular monitoring should be maintained.</td>
</tr>
<tr>
<td>FIREWATER SYSTEM</td>
<td>No SRB, but high GHB measured in all the hydrants sampled. No residual chlorine, high potential risk of biofouling.</td>
<td>A regular firewater ring main flushing routine should be implemented to prevent stagnation and bring in freshly chlorinated water.</td>
</tr>
</tbody>
</table>

Green Good Control, Low Risk, No Immediate Action Required
Yellow Requires Careful Monitoring/Possible Early Intervention
Red Risk Of MIC, Urgent Action Recommended
All data should be graphed/trended on a regular basis – pipelines, drains, deaerator tower etc.

- Trending of data pre and post biocide applications – especially if it is a long term project
- Biocide treatments can then be optimised
- Monitoring essential
SRB BY MPN ENUMERATION
PRE & POST BIOCIDES DOSES
SRA NUMBERS BY qPCR
PRE & POST BIOCIDE DOSES
OPEN DRAIN VESSEL (MPNs)
BIocide application strategies

Strategies
Monitoring
Programmes
Optimisation

Lab and field based biocide trials against planktonic/sessile bacteria
PITS – MIC?
THANK YOU FOR YOUR ATTENTION
ANY QUESTIONS?