ICorr Aberdeen Branch Welcomes

Dr Muhammad Ejaz (CEng, FIMMM, MICorr)
With inputs from
Dr Ed Whyte
PLANT INTEGRITY MANAGEMENT LTD

PIM was established in 2011 to provide consultancy and strategic management support for their clients - helping them manage the function and integrity of their critical plant and equipment.

WHAT WE DO: STRATEGIC MANAGEMENT OF INTEGRITY AND THE PROVISION OF OPERATIONAL SUPPORT

WHERE WE ARE: UK, KSA, MALAYSIA
MUHAMMAD EjAZ

BSc, METALLURGICAL ENGINEERING DEGREE, PAKISTAN
MSc, MATERIALS DEGREE, SOUTH KOREA
PhD, CORROSION AND PROTECTION, THE UNIVERSITY OF
MANCHESTER

2010 – 2014 CAN OFFSHORE / ENGTEQ
2014 – 2017 LR SENERGY / LR
2017 – TO DATE PLANT INTEGRITY MANAGEMENT

CEng FIMMM, MICorr, MIEP
CORROSION RATE MODELLING AND MONITORING

INTRODUCTION

CO₂ MODELLING SOFTWARE

HOW TO USE CALCULATED CORROSION RATE

ONLINE MONITORING

WHAT TO EXPECT OUT OF MONITORING DATA

HOW TO USE MONITORING DATA
Introduction

PART 1 - Corrosion Modelling - complete life cycle of the plant

• **Design of new facilities**
 - Materials Selection (C-steel vs CRA)
 - Corrosion barrier (Inhibition, coating, CP etc.) requirements

• **Integrity Management**
 - React to change in process conditions
 - New facility tie-in

PART 2 - Monitoring (*Indirect estimate of corrosion through inserted probes/coupons*) observe if predicted corrosion rates are valid.
This presentation covers

• Carbon steel - *not* Corrosion Resistant Alloys
• Linear corrosion mechanism (general corrosion) – *not* cracking

Objective is to:

• Provide an overview of corrosion modelling and monitoring
• Avoid black box approach – “Computer says…..”
• Use engineering judgment with numbers (modelling/monitoring)
• Understand limitation of modelling / monitoring
PART 1 - CORROSION RATE MODELLING
Corrosion Modelling for Oil and Gas

- **CO₂ Corrosion**
- **O₂ Corrosion**
- **H₂S Corrosion**

- **Anodic Reaction**
 \[\text{Fe} \leftrightarrow \text{Fe}^{2+} + 2\text{e}^- \]

- **Cathodic Reaction(s)**
 \[\text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{H}_2\text{CO}_3 + 2\text{e}^- \leftrightarrow \text{H}_2 + \text{CO}_3^{2-} \text{ (CO}_2 \text{ Corrosion)} \]
 \[\text{O}_2 + 4\text{H}^+ + 4\text{e}^- \leftrightarrow 2\text{H}_2\text{O} \text{ (O}_2 \text{ corrosion – Not covered here)} \]
 \[\text{H}_2\text{S} \leftrightarrow 2\text{H}^+ + \text{S}^{2-} \text{ (H}_2\text{S Corrosion – Not covered here)} \]
CO$_2$ Corrosion

General Corrosion

Raindrop attack - gas condensate

Mesa-type corrosion
Types of Predictive Models

- **Mechanistic**
 - Formulated from quantitative knowledge of reaction *thermodynamic* and *kinetics*

- **Empirical**
 - Formulated from array of *experimental measurements*

- **Semi-empirical**
 - *Mix of Above*
De Waard and Milliams (Carbonic Acid Corrosion of Steel, 1975)

\[\log V_{corr} = 5.8 - \left(\frac{1710}{(273 + T)} \right) + 0.67 \log (P_{CO_2}) \]

where

- \(V_{corr} \) is corrosion rate
- \(T \) is Temperature, and
- \(P_{CO_2} \) is partial pressure of CO\(_2\)

(cathode reaction: \(H_2CO_3 \) reduction)
Partial pressure of a gas

- Partial pressure quantifies gas dissolved in water at equilibrium
 - Total pressure * Mole fraction in gas

For example:
For 0.1% CO$_2$ in gas at pressure of 10 bara

\[P_{CO_2} = 10 \times 0.1 = 1 \text{ bara} \]

- Ideal gas – Henry’s law
- Fugacity correction
Effect of acid gases on pH

- pH is function of
 - Partial pressure of acid gases
 - Temperature
 - Organic acid (Acetates)
 - Formation water chemistry
 - Formation water >~ 4.5
 - Condensed water >= 3.5
• About 60 - 70°C carbonate scale start forming on carbon steel surface

\[Fe + H_2O + CO_2 \leftrightarrow FeCO_3 \text{ (Siderite)} + H_2 \]
De Waard & Milliams Nomogram

Example:
0.2 bar CO₂ at 120 °C
gives 10 × 0.7 = 7 mm/y

\[CR_{scale} = CR_{free} \times SF \]
Development of Predictive Model Software

- pH
- Scale
- Steel composition
- Glycol %
- Inhibition
- CP
- Organic acids

- de Waard et al (Shell)
- NORSOK model (Statoil, Saga, Hydro)
- HYDROCOR (Shell)
- Cassandra (BP)
- CORMED (Elf)
- LIPUCOR (Total)
- CORPLUS (Total)
- KSC Model (IFE)
- ECE model (Intetech)
- SweetCor (Shell)
- OLI model (OLI Systems)
- PREDICT (InterCorr)
- Tulsa model (University of Tulsa)
- Jepson model (University of Ohio)
- MULTICORP (University of Ohio)
- Corpos (CorrOcean)
- ULL model (University of Louisiana at Lafayette)
- DREAM (Oklahoma State University)
NORSOK M-506 (2005)

• Input

• Limitations

The model is valid for temperature 5 - 150 °C, pH 3.5 - 6.5, CO₂ partial pressure 0.1 - 10 bar and shear stress 1 - 150 Pa. The model is not applicable when the H₂S partial pressure is higher than 0.5 bar, or when the ratio between the partial pressure of CO₂ and H₂S is less than 20. The model can lead to underprediction of the corrosion rate when the total content of organic acids exceeds 100 ppm and the CO₂ partial pressure is less than 0.5 bar.

• Output

Pressure = 10 bar, Shear stress = 10 Pa, CO₂ = 5 mole%
Corrosion allowance (mm)

- Calculated corrosion rate \(\times \) design life

 \textit{If corrosion allowance is more than 10 mm for carbon steel – consider using corrosion resistant alloys (NORSOK M-001)}

- Complete life cycle cost analysis with carbon steel + inhibition

- Be aware of different corrosion rates (outputs) from different models
Comparison of Predictive models

- f Temperature
- f pH
- f Pressure
Example:

Corrosion Rates for Carbon Steel

pH Model BP

Water Composition Western Isles

Corrosion Inhibitor 95%

Pipe OD 219.1 mm

Inhibited Rate mm/yr

Required corrosion allowance

<table>
<thead>
<tr>
<th>Corrosion Inhibitor</th>
<th>95%</th>
<th>Design Life</th>
<th>15 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>8" Production</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Temperature</th>
<th>Pressure</th>
<th>Average Mol% CO₂</th>
<th>Mol% H₂S</th>
<th>Oil Flowrate</th>
<th>Water Flowrate</th>
<th>Gas Flowrate</th>
<th>pH</th>
<th>Basic</th>
<th>Flow-sensitive</th>
<th>Norsok</th>
<th>ECE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67</td>
<td>73</td>
<td>6.50</td>
<td>0</td>
<td>2584</td>
<td>79</td>
<td>113267</td>
<td>4.4</td>
<td>0.8</td>
<td>1.2</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>67</td>
<td>73</td>
<td>6.50</td>
<td>0</td>
<td>3483</td>
<td>228</td>
<td>339802</td>
<td>4.4</td>
<td>0.8</td>
<td>1.2</td>
<td>1.2</td>
<td>1.4</td>
</tr>
<tr>
<td>3</td>
<td>67</td>
<td>73</td>
<td>6.50</td>
<td>0</td>
<td>1048</td>
<td>1984</td>
<td>339802</td>
<td>4.4</td>
<td>0.8</td>
<td>1.2</td>
<td>1.2</td>
<td>1.4</td>
</tr>
<tr>
<td>4</td>
<td>67</td>
<td>73</td>
<td>6.50</td>
<td>0</td>
<td>911</td>
<td>2411</td>
<td>339802</td>
<td>4.4</td>
<td>0.8</td>
<td>1.2</td>
<td>1.2</td>
<td>1.4</td>
</tr>
<tr>
<td>5</td>
<td>67</td>
<td>73</td>
<td>6.50</td>
<td>0</td>
<td>804</td>
<td>2443</td>
<td>339802</td>
<td>4.4</td>
<td>0.8</td>
<td>1.2</td>
<td>1.2</td>
<td>1.4</td>
</tr>
<tr>
<td>6</td>
<td>67</td>
<td>73</td>
<td>6.50</td>
<td>0</td>
<td>578</td>
<td>2926</td>
<td>311485</td>
<td>4.4</td>
<td>0.8</td>
<td>1.2</td>
<td>1.2</td>
<td>1.4</td>
</tr>
<tr>
<td>7</td>
<td>67</td>
<td>73</td>
<td>6.50</td>
<td>0</td>
<td>578</td>
<td>2926</td>
<td>311486</td>
<td>5.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>8</td>
<td>67</td>
<td>73</td>
<td>6.50</td>
<td>0</td>
<td>578</td>
<td>2926</td>
<td>311486</td>
<td>5.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>9</td>
<td>67</td>
<td>73</td>
<td>6.50</td>
<td>0</td>
<td>578</td>
<td>2926</td>
<td>311486</td>
<td>5.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>67</td>
<td>73</td>
<td>6.50</td>
<td>0</td>
<td>578</td>
<td>2926</td>
<td>311486</td>
<td>5.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>11</td>
<td>67</td>
<td>73</td>
<td>6.50</td>
<td>0</td>
<td>578</td>
<td>2926</td>
<td>311486</td>
<td>5.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>12</td>
<td>67</td>
<td>73</td>
<td>6.50</td>
<td>0</td>
<td>578</td>
<td>2926</td>
<td>311486</td>
<td>5.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>13</td>
<td>67</td>
<td>73</td>
<td>6.50</td>
<td>0</td>
<td>578</td>
<td>2926</td>
<td>311486</td>
<td>5.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>14</td>
<td>67</td>
<td>73</td>
<td>6.50</td>
<td>0</td>
<td>578</td>
<td>2926</td>
<td>311486</td>
<td>5.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>15</td>
<td>67</td>
<td>73</td>
<td>6.50</td>
<td>0</td>
<td>578</td>
<td>2926</td>
<td>311486</td>
<td>5.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PHACT</th>
<th>BP93</th>
<th>DW93</th>
<th>BP95</th>
<th>DW95</th>
<th>M-506</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>0.8</td>
<td>1.2</td>
<td>0.9</td>
<td>1.0</td>
<td>20.0</td>
</tr>
<tr>
<td>4.4</td>
<td>0.8</td>
<td>1.2</td>
<td>0.9</td>
<td>1.0</td>
<td>22.0</td>
</tr>
<tr>
<td>4.4</td>
<td>0.8</td>
<td>1.2</td>
<td>0.9</td>
<td>1.0</td>
<td>22.0</td>
</tr>
<tr>
<td>4.4</td>
<td>0.8</td>
<td>1.2</td>
<td>0.9</td>
<td>1.0</td>
<td>23.0</td>
</tr>
<tr>
<td>4.4</td>
<td>0.8</td>
<td>1.2</td>
<td>0.9</td>
<td>1.0</td>
<td>23.0</td>
</tr>
<tr>
<td>4.4</td>
<td>0.8</td>
<td>1.2</td>
<td>0.9</td>
<td>1.0</td>
<td>24.0</td>
</tr>
</tbody>
</table>

Example: Corrosion Allowance Calculation

- **Inhibited Rate mm/yr**
- **Basic Flow-sensitive**
- **Uninhibited**
- **Uninhibited**
- **Inhibited**

Inhibited Rate mm/yr

Required corrosion allowance
Flow regimes in horizontal pipe

Example of steady-state flow regime map for a horizontal pipe. Superficial liquid velocity V_L vs superficial gas velocity V_G.

- **Dispersed-bubble or bubble flow**
- **Intermittent: Elongated bubble, slug, and churn flow**
- **Stratified-smooth flow**
- **Stratified-wavy flow**
- **Annular flow**
- **Annular flow with droplets**
- **Annular flow**
- **Churn flow**
- **Slug flow**
- **Dispersed bubble flow**
Exploiting Output – Inhibition categorisation

<table>
<thead>
<tr>
<th>Category</th>
<th>Maximum Required Availability</th>
<th>Maximum Expected Uninhibited Corrosion Rate (mm/yr)</th>
<th>Comment</th>
<th>Possible Category Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0%</td>
<td>0.4</td>
<td>Benign fluids where corrosion inhibitor usage is not anticipated (dry gas, stabilised oil). Predicted metal loss can be accommodated by corrosion allowance alone.</td>
<td>Benign</td>
</tr>
<tr>
<td>2</td>
<td>50%</td>
<td>0.7</td>
<td>Corrosion inhibitor will probably be required but at the expected corrosion rates there will be time to review the need for inhibition based on inspection data.</td>
<td>Low</td>
</tr>
<tr>
<td>3</td>
<td>90%</td>
<td>3</td>
<td>Corrosion inhibitor will be required for the majority of the field life but the facilities need not be available from day 1.</td>
<td>Medium</td>
</tr>
<tr>
<td>4</td>
<td>95%</td>
<td>6</td>
<td>Inhibition is relied on heavily and will be required for the lifetime of the operation. Inhibitor must be available from day 1 to ensure success of the inhibition programme.</td>
<td>High</td>
</tr>
<tr>
<td>5</td>
<td>>95%</td>
<td>>6</td>
<td>Carbon steel and inhibition is unlikely to provide integrity for the full field life. Select corrosion resistant materials or plan for repairs & replacements.</td>
<td>Unacceptable</td>
</tr>
</tbody>
</table>

PART 2 - CORROSION MONITORING
Online Corrosion monitoring

- Corrosion Coupons
- Electrical Resistance
- Linear Polarisation Resistance
- Galvanic Current
- Electrochemical Noise
- Hydrogen Permeation
- Field Signature Method
- Ring Pair Corrosion Monitoring
- Iron Counts/Chemical Analysis models
Why Monitoring

- Identify rate and type of corrosion at given location (e.g. general corrosion, localized corrosion)

- Provide assurance of chemical performance (e.g. injection rates)

- Provides an early indication of potential threat allowing proactive resolution and reduce risk of hydrocarbon release.

- Used as input into RBI assessment (IoW)

- Increase confidence in plant integrity.
Corrosion Coupon and Corrosion Probe (Typical Assembly)
Corrosion Coupons

- Weight loss - average corrosion rate
 \[
 \frac{\text{Initial weight} - \text{Final weight}}{\text{Area} \times \text{Density} \times \text{Exposure period}} \times \text{Unit factor}
 \]

- Visual Inspection – Localised corrosion

- Microbial Sampling (Swab)
• Electrically isolated to avoid galvanic interaction
• Strip coupons usually mounted in pairs from top / side / bottom of pipe
• Flush Disc normally mounted in top/bottom of pipe
Mounting/Location Examples

- Strip Coupon Top of Line
- Strip Coupon Top and Bottom Monitoring
- Flush Disc
- Projecting Disc
- Multiple Disc
- Strip Coupon 3 Phase Monitoring
Methodology - Coupons

- Select appropriate material / dimensions / surface finish
- Weigh coupon
- Insert into equipment
- Retrieve after a period (e.g. 6 months) - Swab for microbial analyses
- Clean/reweight
- Calc. CR
Corrosion Coupons – Pros-Cons

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple and cheap</td>
<td>In very low corrosion rate conditions - insensitive - long exposure periods are required</td>
</tr>
<tr>
<td>Can be used in any environment</td>
<td>Can provide relatively long term data</td>
</tr>
<tr>
<td>Provide a visual indication of corrosion type as well as rate</td>
<td>Require laboratory stage (cleaning and weighing) before data are available</td>
</tr>
<tr>
<td>Can provide pitting rate data</td>
<td>Time averaging – will not tell you about corrosion rates at any specific time</td>
</tr>
</tbody>
</table>
Electrical Resistance (ER) Probe

- Corrosion cause reduction in cross section
 \[
 \Delta(x\text{-sectional area}) \rightarrow \Delta ER \text{ is measured} \rightarrow \propto \text{ corrosion rate}
 \]
- Reference element eliminates temperature effects
ER probe – Pros-Cons

<table>
<thead>
<tr>
<th>ER probes</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can be used in any environment (conducting and non-conducting)</td>
<td>Will not give reliable data in pitting or localised corrosion conditions</td>
<td></td>
</tr>
<tr>
<td>Different types of probe elements available to cover different requirements, i.e. high sensitivity, long life, flush or protruding shapes</td>
<td>Probes can be either sensitive with a short life, or insensitive with a long life, but not both</td>
<td></td>
</tr>
<tr>
<td>Can give data “on-line” either:</td>
<td>Response time for reliable result dependent on corrosion rate:</td>
<td></td>
</tr>
<tr>
<td>Intermittently (single readings taken daily/weekly/monthly)</td>
<td>1 - 10 hrs at 5 mm/yr</td>
<td></td>
</tr>
<tr>
<td>Continuously (readings taken at regular intervals, typically 1 hourly)</td>
<td>10 - 100 hrs at 0.5 mm/yr</td>
<td></td>
</tr>
<tr>
<td>Sensitivity down to several nm possible with latest technology</td>
<td>100 - 1,000 hrs at 0.05 mm/yr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average rates only between data sampling intervals</td>
<td></td>
</tr>
</tbody>
</table>
Typical ER probe data

- 0.2 mm/y
- 0.7 mm/y
- 0.84 mm/y
Reporting Monitoring Data
• Based on standard LPR technique

• Corrosion rate is $\propto 1/R_{\text{electrode}}$

• *Instantaneous* corrosion rate (~ 1 min for a measurement)
LPR Probe Measurement

![Graph showing Inhibitor Addition and Corrosion Rate over Time]

- **Corrosion Rate [mm/yr]**
 - 0.1
 - 0.2
 - 0.3
 - 0.4
 - 0.5
 - 0.6
 - 0.7
- **Time [hours]**
 - 0
 - 10
 - 20
 - 30
 - 40
 - 50
 - 60
 - 70
 - 80
 - 90

- **Inhibitor Addition**
- **Dosaged**
- **Stopped**
LPR Probe – Pros-Cons

<table>
<thead>
<tr>
<th>LPR probes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>Disadvantages</td>
</tr>
<tr>
<td>Gives relatively instantaneous corrosion rate</td>
<td>Can only be used in conductive media (mainly aqueous)</td>
</tr>
<tr>
<td></td>
<td>If electrodes become fouled - can give erroneous results</td>
</tr>
<tr>
<td></td>
<td>Generally gives little information on localised corrosion</td>
</tr>
</tbody>
</table>
Various Corrosion prediction models and monitoring options are available

• Use corrosion prediction model with care and engineering judgment should always be applied.

• Always challenge and sense check the output - Don’t always believe what “Computer says…………”.

• Understand the limitation of predictive models.

• Correlate predictive and monitored rates with in-service inspection data for integrity management decisions.

• Corrosion monitoring is ‘part of’ not the whole story.
THANK YOU FOR YOUR ATTENTION ANY QUESTIONS?