Impressed Current Cathodic Protection Retrofit System
Icorr Aberdeen

Edgar Rodrigues
Corrosion and Materials Technical Authority
Impressed Current Cathodic Protection Retrofit System
Icorr Aberdeen

Agenda
1. TAQA
2. Sacrificial Anodes Vs Impressed Current
3. History – North Cormorant
4. CP Inspection History – North Cormorant
5. Facts – North Cormorant
6. CP Assessments
7. ICCP Project Scope and Requirements
8. Commissioning
9. Results
10. Conclusions
Impressed Current Cathodic Protection Retrofit System
Icorr Aberdeen

Agenda
1. TAQA
2. Sacrificial Anodes Vs Impressed Current
3. History – North Cormorant
4. CP Inspection History – North Cormorant
5. Facts – North Cormorant
6. CP Assessments
7. ICCP Project Scope and Requirements
8. Commissioning
9. Results
10. Conclusions
Impressed Current Cathodic Protection Retrofit System

Icorr Aberdeen

1. TAQA

Northern North Sea (2008)
- Cormorant Alpha
- North Cormorant
- Tern
- Eider

Central North Sea (2013)
- Harding
Impressed Current Cathodic Protection Retrofit System
Icorr Aberdeen
Impressed Current Cathodic Protection Retrofit System
Icorr Aberdeen

Agenda

1. TAQA
2. Sacrificial Anodes Vs Impressed Current
3. History – North Cormorant
4. CP Inspection History – North Cormorant
5. Facts – North Cormorant
6. CP Assessments
7. ICCP Project Scope and Requirements
8. Commissioning
9. Results
10. Conclusions
2. Sacrificial Anodes Vs Impressed Current

From BS CP1021:1973
Sacrificial Anodes versus Impressed current

<table>
<thead>
<tr>
<th>Sacrificial Anodes</th>
<th>Impressed Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Independent of any source of electrical power</td>
<td>1) Requires a mains supply or other source of electric power</td>
</tr>
<tr>
<td>2) They may be required at a large number of positions. Their life varies with</td>
<td>2) Requires generally a small total number of anodes</td>
</tr>
<tr>
<td>conditions so that replacements may be required at different intervals of time and</td>
<td></td>
</tr>
<tr>
<td>different parts of the system</td>
<td></td>
</tr>
<tr>
<td>3) Their output cannot be controlled but there is a tendency for their current to</td>
<td>3) Requires relatively simple controls and can be made automatic to maintain</td>
</tr>
<tr>
<td>be self-adjusting</td>
<td>potentials within close limits despite wide variations of conditions</td>
</tr>
<tr>
<td>4) They cannot be misconnected so that polarity is reversed</td>
<td>4) Requires the polarity to be checked during commissioning because misconnection,</td>
</tr>
</tbody>
</table>
Impressed Current Cathodic Protection Retrofit System
Icorr Aberdeen

Agenda
1. TAQA
2. Sacrificial Anodes Vs Impressed Current
3. History – North Cormorant
4. CP Inspection History – North Cormorant
5. Facts – North Cormorant
6. CP Assessments
7. ICCP Project Scope and Requirements
8. Commissioning
9. Results
10. Conclusions
3. History – North Cormorant

- North Cormorant was constructed in the late 1970s
- Installed in 1980/81
- Eight-legged steel piled jacked
- No coatings applied other than the risers
- No corrosion allowance was considered for structural steels
- Original designed by using sacrificial aluminium alloy galvanic anodes
- The asset remains viable and serves as a critical hub for major fields in the area
Impressed Current Cathodic Protection Retrofit System
Icorr Aberdeen

Agenda

1. TAQA
2. Sacrificial Anodes Vs Impressed Current
3. History – North Cormorant
4. CP Inspection History – North Cormorant
5. Facts – North Cormorant
6. CP Assessments
7. ICCP Project Scope and Requirements
8. Commissioning
9. Results
10. Conclusions
5. CP Inspection History – North Cormorant

Graph 1 indicates pipeline potentials from 2002 to 2007. The potentials show a gradual decline during this period at the North Cormorant end – KP 16.54.
5. CP Inspection

Figure 1: Anode depletion in 2007
5. CP Inspection History – North Cormorant

Summary of Elevations

- **Average Potential (mV vs Ag/AgCl)**
- **Year**
- **ELV -18m**
- **ELV -46m**
- **ELV -74m**
- **ELV -102m**
- **ELV -130m**
- **ELV -158m**

30/01/2018
5. CP Inspection History – North Cormorant
5. CP Inspection History – North Cormorant

ROV SURVEY RESULTS – 18/06/2014

- Integrity threat
- Corrosion TA & Structural TA
- Action was taken to re-instate the CP System
5. CP Inspection History – North Cormorant

Figure 4: Example of Depleted Anode at EL158
Impressed Current Cathodic Protection Retrofit System
Icorr Aberdeen

Agenda

1. TAQA
2. Sacrificial Anodes Vs Impressed Current
3. History – North Cormorant
4. CP Inspection History – North Cormorant
5. Facts – North Cormorant
6. CP Assessments
7. ICCP Project Scope and Requirements
8. Commissioning
9. Results
10. Conclusions
4. Facts – North Cormorant

- Submerged jacket structure is 3x height of St Nicholas House,
- Structural members made of offshore submerged arc welded structural steel grade – BS7191
- Fabricated from 5 km of tube diameter 0.7m to 6m and wall thickness between 20mm to 65 mm,
- Any attempt to justify a corroding jacket would require extensive subsea inspection,
 - Widespread removal of marine growth before CVI and NDT inspection,
 - Annual cost for inspecting 1% of the welds (30welds) £3.75m; 10% of welds (300 welds) £37.5m,
- Corrosion was extremely difficult to predict and could be influenced by galvanic corrosion, MIC, pitting and PWC
Impressed Current Cathodic Protection Retrofit System
Icorr Aberdeen

Agenda

1. TAQA
2. Sacrificial Anodes Vs Impressed Current
3. History – North Cormorant
4. CP Inspection History – North Cormorant
5. Facts – North Cormorant
6. CP Assessments
7. ICCP Project Scope and Requirements
8. Commissioning
9. Results
10. Conclusions
6. CP Assessments
Impressed Current Cathodic Protection Retrofit System
Icorr Aberdeen

6. CP Assessments

- Assessment,

✓ Massive daunting task to calculate the surface area from pre-electronic drawing era and old scanned documents; it was calculated to be in the region of between 75,000 and 85,000 m².

✓ There is currently no guide or standard for offshore retrofit CP designs,

✓ Previous studies and structure current average were used to calculate current requirements,

✓ A galvanic anode system would have required over 600 gross tonnes of anodes to the structure,

Challenges being:

- How much contingency does one add in to account for re-polarization of the existing system?
- How long will take the system to re-polarised?
- When will retro-fit system get installed and commissioned?
- Financial constraints
- Safety
6. CP Assessments

- After 33 years length a new protection system was required – studies conducted between 2011 and 2014 concluded that retrofit sacrificial anodes would not provide the required repolarization current and their **size was impractical**; so installation of an **impressed current system was required**.

- Assuming 80,000 m² surface area,
- @ 4200 A equated “mean” current density of 52.5 mA/ m²
- Capacity available for redundancy and “final” current
Impressed Current Cathodic Protection Retrofit System
Icorr Aberdeen

Agenda

1. TAQA
2. Sacrificial Anodes Vs Impressed Current
3. History – North Cormorant
4. CP Inspection History – North Cormorant
5. Facts – North Cormorant
6. CP Assessments
7. ICCP Project Scope and Requirements
8. Commissioning
9. Results
10. Conclusions
7. ICCP Project Scope and Requirements

- Purchase eight transformer rectifier units (TRU) and subsea anode retro-buoys
- Purchase new subsea cables; one for each retro-buoy
- Attach the subsea cable to the ICCP retro-buoys, install on seabed, including stabilisation and protection as may be required,
- Hook-up subsea cables to the TRU and TRU to North Cormorant power supply
- Commission system
7. ICCP Project scope and Requirements
Impressed Current Cathodic Protection Retrofit System
Icorr Aberdeen

Agenda

1. TAQA
2. Sacrificial Anodes Vs Impressed Current
3. History – North Cormorant
4. CP Inspection History – North Cormorant
5. Facts – North Cormorant
6. CP Assessments
7. ICCP Project Scope and Requirements
8. Commissioning
9. Results
10. Conclusions
8. Commissioning

The retrofit Impressed Current CP (ICCP) solution for TAQA’s North Cormorant Platform was commissioned in January 2016 and consists of 8 complete systems each with the following components:

- 8-off seabed mounted impressed current Retrobuoy anode skids
- 8-off subsea anode power cables
- 8-off transformer rectifier (DC power supply)
- CP monitoring systems.
8. Commissioning

The retrofit Impressed Current CP (ICCP) solution for TAQA’s North Cormorant Platform was commissioned in January 2016 and consists of 8 complete systems each with the following components:

- 8-off seabed mounted impressed current Retrobuoy anode skids
- 8-off subsea anode power cables
- 8-off transformer rectifier (DC power supply)
- CP monitoring systems.
Impressed Current Cathodic Protection Retrofit System
Icorr Aberdeen

Agenda

1. TAQA
2. Sacrificial Anodes Vs Impressed Current
3. History – North Cormorant
4. CP Inspection History – North Cormorant
5. Facts – North Cormorant
6. CP Assessments
7. ICCP Project Scope and Requirements
8. Commissioning
9. Results
10. Conclusions
9. Results

Impressed Current Cathodic Protection Retrofit System
Icorr Aberdeen
9. Results

![Graph showing potential (mV wrt Ag/AgCl) vs depth (m). The graph includes lines for As-Found, 4200 A (As-Left), 4200 A (118 Days), and -900mV CP Criteria.]
9. Results

![NC ICCP Transformer/Rectifier Readings](image-url)

- Impressed Current Cathodic Protection Retrofit System
- Icorr Aberdeen

[Graph showing NC ICCP Transformer/Rectifier Readings with dates and ampere values]
9. Results

Strategy and Results of an Impressed Current Cathodic Protection Retrofit in the North Sea

Edgar Rodrigues
TAQA Bratani Limited
Prospect Road, Westhill,
Aberdeenshire
AB32 6FE United Kingdom

Alex Delwiche
Deepwater EU Ltd
Unit 4.8 Frimley Business Park
Camberley, Surrey
GU16 7SG United Kingdom

Tim Queen
Deepwater EU Ltd
Unit 4.8 Frimley Business Park
Camberley, Surrey
GU16 7SG United Kingdom
Impressed Current Cathodic Protection Retrofit System
Icorr Aberdeen

Agenda

1. TAQA
2. Sacrificial Anodes Vs Impressed Current
3. History – North Cormorant
4. CP Inspection History – North Cormorant
5. Facts – North Cormorant
6. CP Assessments
7. ICCP Project Scope and Requirements
8. Commissioning
9. Results
10. Conclusions
10. Conclusions

✓ Project was successfully completed on time and under budget
✓ The galvanic CP system on a large offshore fixed structure in the North Sea lasted 30 years
✓ The most cost effective method of extending the CP life of a structure of this magnitude is with a remote ICCP system
✓ Polarisation is ongoing and could take another year
Many thanks to TAQA whom allowed me to publish and present this data

Big thanks to the Project Team – Project Manager Ronnie Toal and Lead Project Engineer Graham Woodland

Big thanks to Deepwater

Thanks to Icorr Aberdeen for this opportunity