Alkylated Amine Epoxy: Maximise productivity, Minimise cost

February 2019

CUI – The Problem

Latest figure – Globally £4 trillion (OGTC site)

<u>CUI – Corrosion Under Insulation</u>

Electrochemical reaction Problem recognised ~ 60 years ago Still causing concern today >80% CUI occurrences in piping

NACE SP0198 now states CUI can occur up to 175°C

AkzoNobel

Insulation characteristics

Insulation system theoretically dry and barrier to water In reality impossible to prevent water ingress

- Mechanical damage
- Degradation of mastic sealing cladding
- Complex geometries

AkzoNobel

Results of CUI

Typical results of CUI

- Metal Loss
- Failure of metal substrate resulting in catastrophic explosions

AkzoNobel

The Challenge

- Oil & Gas projects can involve thousands of pipe spools, valves and vessels
- All require different coating schemes depending on
 - Carbon steel or stainless steel
 - Insulated or un-insulated requirements
 - Service temperature range

The Challenge

Pipe Spool Coater, Louisiana, USA: "In a single month, I will use 40 different coatings from 6 different manufacturers...it's a nightmare!"

The Challenge

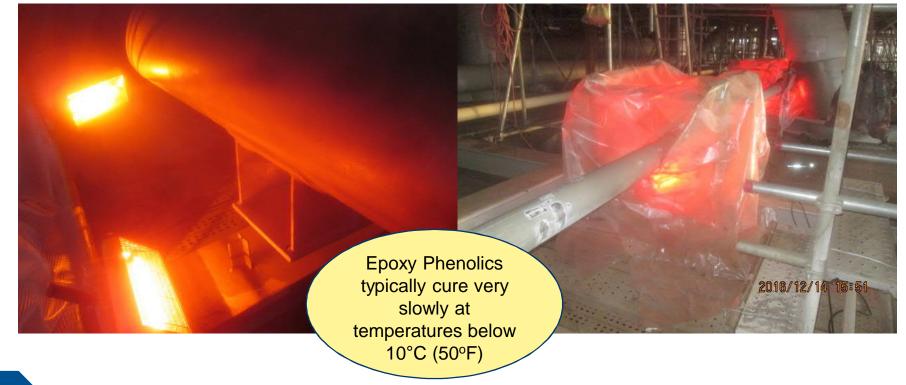
AkzoNobel

SP0108-2008

Table 3B. Typical Atmospheric Zone Maintenance Coating Systems on Carbon Steels

Service Category	Coat	Coating System	DFT, μm (mil)	Target DFT, μm (mil)	
CM-1 Water condensing pipes	1	Underwater-curable epoxy ^(A)	375-750 (15-30)	500 (20)	
CM-2 Atmospheric zone	1 2 3	Epoxy primer High-solids epoxy Polyurethane	125-175 (5-7) 125-175 (5-7) 50-75 (2-3)	125 (5) 125 (5) 75 (3)	
-50 to 120°C (-58 to 248°F) with/without insulation	1 2 3	Organic zinc-rich primer Epoxy Polyurethane	50-75 (2-3) 125-175 (5-7) 50-75 (2-3)	75 (3) 125 (5) 75 (3)	
	1 2 3	Moisture-cured urethane primer Moisture-cured urethane Moisture-cured urethane	75-125 (3-5) ^(B) 75-125 (3-5) ^(B) 75-125 (3-5) ^(B)	100 (4) 100 (4) 100 (4)	
CM-3 Atmospheric zone	1 2	Epoxy phenolic Epoxy phenolic	100-125 (4-5) 100-125 (4-5)	125 (5) 125 (5)	
120 to 150°C (248 to 302°F) with/without insulation	1 2	Silicon-based HB coating ^(C) Silicon-based HB coating ^(C)	100-200 (4-8) 100-200 (4-8)	150 (6) 150 (6)	

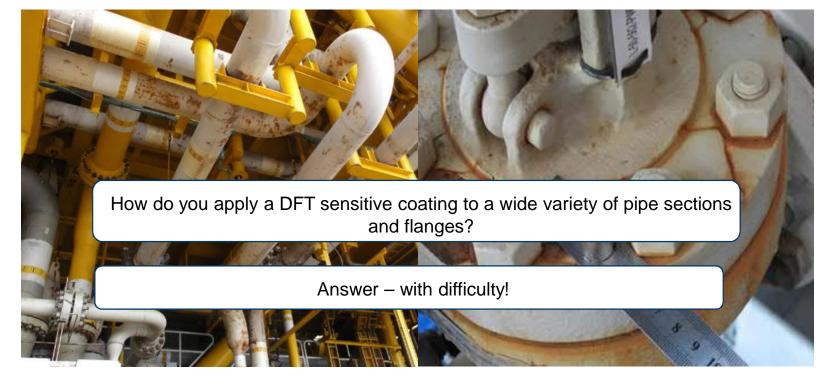
The Challenge Epoxy Phenolics



In -196°C to 230°C (-320°F to 446°F) temperature range the epoxy phenolic currently dominates conventional specifications, but presents challenges for large, complex projects.

The Challenge Epoxy Phenolics

AkzoNobel



The Challenge Epoxy Phenolics

AkzoNobel

The Challenge Epoxy Phenolics

The Challenge Complexity

Lots of coating systems

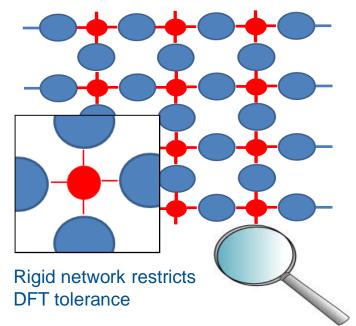
Some are difficult to apply easily

Complexity and slow curing can slow down productivity

Is there a better way?

AkzoNobel

Alkylated Amine Epoxy Coating Performance from -196°C to +230°C


What is Alkylated Amine Epoxy Technology?

Alkylated Amine Epoxy

XInternational.

Typical Epoxy Phenolic

The Benefits Tolerance to over application

AkzoNobel

Standard Epoxy Phenolic 2 x 175µm (7mils)

Standard Epoxy Phenolic 2 x 225µm (9mils)

Alkylated amine epoxy 2 x 350µm (14 mils)

Test consists of heating to 200°C (392°F) for 8hrs and leaving to cool to ambient for 16hrs; test is repeated 5 times

The Benefits Fast and Low Temperature Curing = Productivity Increase

AkzoNobel

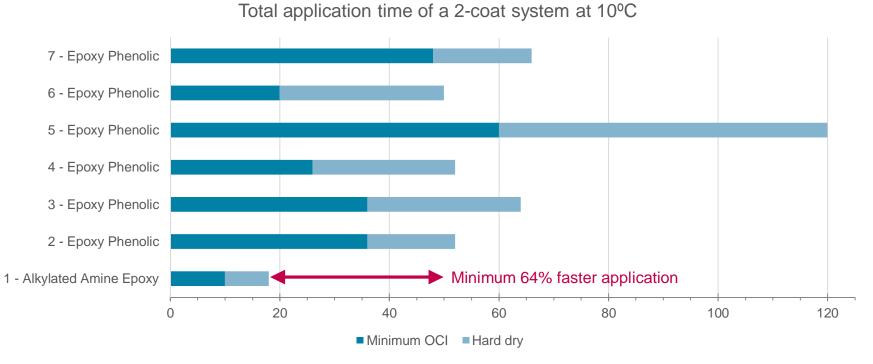
20°C (68°F) ambient temperature

Epoxy Phenolic	System
Alkylated Amine Epoxy System	2x faster application

Time to apply system:

Temperature	Hard dry	Min Overcoating
-5°C	10 hrs <mark>(N/A)</mark>	14 hrs <mark>(N/A)</mark>
10°C	8 hrs <mark>(16 hrs)</mark>	10 hrs <mark>(36 hrs)</mark>
20°C	6 hrs <mark>(10 hrs)</mark>	7 hrs <mark>(20 hrs)</mark>
35°C	4 hrs <mark>(7 hrs)</mark>	4hrs <mark>(16 hrs)</mark>

Alkylated Amine Epoxy in Black. Typical Epoxy Phenolic values in red


Performance Analysis Benchmarking

Coating	Coating Chemistry
1	Alkylated Amine Epoxy
2	Epoxy Phenolic
3	Epoxy Phenolic
4	Epoxy Phenolic
5	Epoxy Phenolic
6	Epoxy Phenolic
7	Epoxy Phenolic
7	Epoxy Phenolic

- AkzoNobel
- All coatings typically specified for service at least up to 200°C
- ¬ Applied at 2 x 125 µm
- All coatings cured at ambient (20°C) for a minimum of 7 days before testing

Productivity

Based on technical datasheets of each product

Performance Analysis Benchmarking

AkzoNobel

Performance of the 7 coatings was tested under the following conditions:

■ Anti-corrosive performance at ambient temperature (-20°C to +60°C)

- Cyclic ageing test (ISO 12944-9:2018) - 25 week cyclic accelerated test

¬ Heat resistance

- Exposure to +205°C for up to 6 months

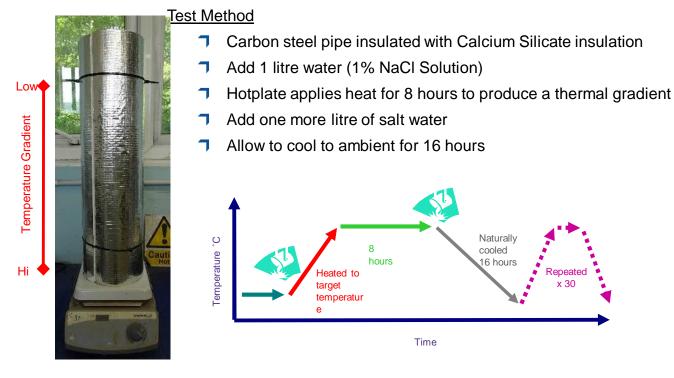
¬ Durability without topcoat or insulation

- Erosion resistance

Anti-corrosion performance

System	1 AAE	2	3	4	5	6	7
Photos	PCWS4456/B7/3-1	PCWS4456/B7/1-1	PCW54456/B7/2-1	P¢WS4456/B715-1	PCWS4456/B7/6-1	PCWS4456/B7/7-1	PCWS4456/B7/8-1
Rust creep	5.3 mm	7.7 mm	7.7 mm	8.1 mm	8.8 mm	8.1 mm	3.3 mm
Defects	None	None	None	None	None	None	Ri5

25 weeks – Cyclic ageing test according to ISO 12944-9:2018 (performance testing for CX environments)

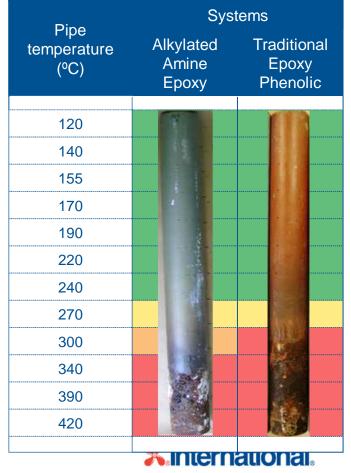

Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7
UV/co	ondensation — ISC	16474-3	Neutra	ıl salt spray —	ISO 9227	Low-temp. exposure at (-20 ± 2) °C
	M	i ya		L.V.		
				X Int	ernati	onal

Dry Heat resistance – 6 months at 205°C

System	1 – Alkylated Amine Epoxy	2	3
Photos (and close-up where defects were observed) Results after 6 months exposure	No visible defects	No visible defects	Lens x30 Significant cracking after 6 weeks
4	5	6	7
Significant cracking after 12 weeks	No visible defects	No visible defects	Lens x30 Minor cracking after 3 weeks

Performance under insulation (ISO19277- AkzoNobel 2018)- Appendix

After 30 cycles (6 weeks) the pipe is removed from test and the coating evaluated


CUI Resistance - Houston Pipe Test (ISO19277-2018)- Appendix

Houston Pipe test

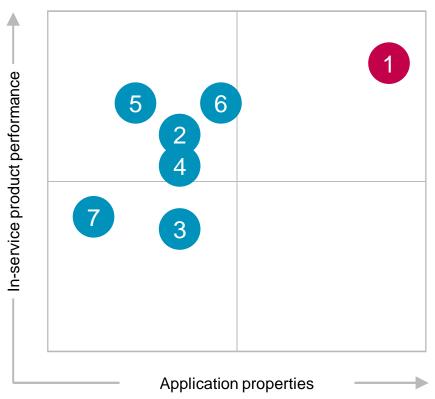
Tested up to ~400°C, although organic coatings are expected to degrade above 250-300°C

Alkylated Amine Epoxy coating offers comparable performance to industry standard epoxy phenolic in terms of protection against Corrosion Under Insulation

AkzoNobel

Alkylated Amine– Track Record 2016

Customer	Clavon Engineering
Information	Alkylated Amine was applied in 2 x 100 micron coats to pressure vessels. These vessels will operate uninsulated and at high temperature as part of the Rapid RGT2 Project.
Project	Rapid RGT2 Project.


Alkylated Amine – Track Record 2016

Customer	Chevron
Information	Alkylated Amine has been applied to flare release lines on the Gorgon Gas Project in Western Australia.
Project	Gorgon Gas Project

Overall Performance – Conclusion

- Generic coating chemistry is not a guarantee of performance: heat resistance and anti-corrosion performance is not equal amongst "epoxy phenolics".
- Alkylated Amine Epoxy coating offers equivalent high heat and CUI performance to industry standard epoxy phenolics. UV resistance is significantly improved.
- Alkylated Amine Epoxy coating offers major application advantages:
 - Improved DFT overapplication tolerance
 - Fast and low temperature curing

Overall Performance – Conclusion

All together mean that Alkylated Amine Epoxy technology offers

= reduced application costs and increased productivity

Questions?