

Integrity Management Lecture 14th October 2020.

Presented by Stephen Tate – Technical Services and Projects – TOTAL E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

About Presenter Stephen Tate MICorr

First Joined the Oil Industry in April 1980 (from Construction Industry) OND Construction and Surveying, Guildford College.1974 PG.Dip.Eng. (Offshore Corrosion and Materials), RGIT, Aberdeen.1983 MBA (Integrity Management) Aberdeen University. 1999 35yrs Aberdeen / 5 Yrs Overseas based Assignments – Europe/UAE/Africa. Last 10 Yrs with ICorr Aberdeen Branch, 2 x Chair, 2x Vice Chair. Worked with Major Operators and Inspection Providers. Last 5 Yrs with TOTAL E&P.

Programme for Tonight – Part 1

Definition of integrity in process plant and structures.

Examples of failures of integrity process plant and structures with the consequences.

Frequent causes of loss of integrity due to corrosion in:

Oil and gas process systems.

Pipelines.

Land based structures.

Offshore structures (fixed and floating).

Corrosion management documentation systems (and recent updates).

Principles

Guidance documents

Q&A Part 1 (questions entered into CHAT). Coffee Break.

Presented by Stephen Tate – Technical Services and Projects – TOTAL **3** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Integrity

(to be complete) Ensure Facilities remain safe, productive and legally compliant.

Presented by Stephen Tate – Technical Services and Projects – TOTAL **4** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Presented by Stephen Tate – Technical Services and Projects – TOTAL **5** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Integrity Failures and Risks

Presented by Stephen Tate – Technical Services and Projects – TOTAL E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

YEP ICorr Integrity Management

Frequent Causes of Loss of Integrity – Oil and Gas Production

Pipe Supports

Conductors and Guides

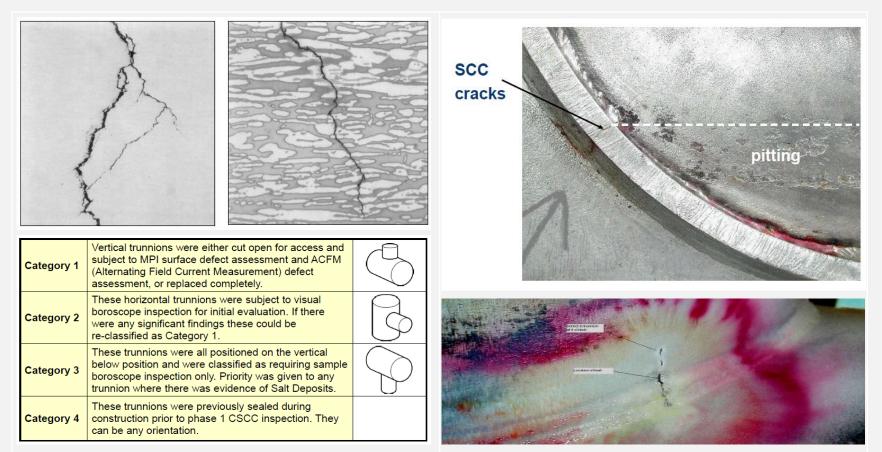
Presented by Stephen Tate – Technical Services and Projects – TOTAL **7** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Other Causes of Loss of Integrity – Oil and Gas Production

Poor Fabrication / Material Selection Practices – Uncoated 316L in Marine Environment

Presented by Stephen Tate – Technical Services and Projects – TOTAL E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

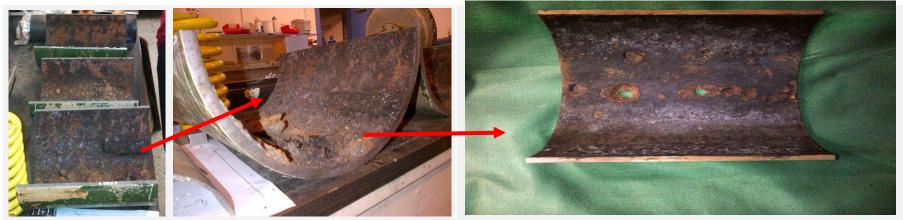
Other Causes of Loss of Integrity – Oil and Gas Production



Poor Fabrication / Material Selection Practices – 316L Weeps + Pitting under ID Labels

Presented by Stephen Tate – Technical Services and Projects – TOTAL **9** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Other Causes of Loss of Integrity – Oil and Gas Production


Pipe Trunnion Salt Water Ingress / Corrosion / Cracking Risks to HT Duplex Lines

Presented by Stephen Tate – Technical Services and Projects – TOTAL **10** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

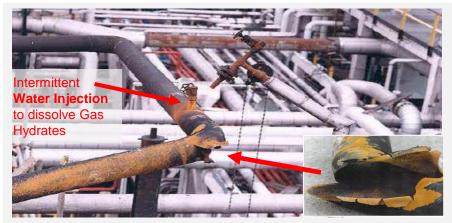
Frequent Causes of Loss of Integrity – Oil and Gas Production

Examination after Intermittent Use

Post-Cleaning BOL – UDC / MIC

The Pipework from both First Stage Separators to the Second Stage and from Second to third was subject to severe internal pitting partly due to being shut in and not drained for quite long spells 6-12M. The failed spool had **many pits which were not reported from previous manual UT** Inspections. **Phased Array** scanning of the 3-9 o'clock parts of the horizontal pipework gave a more definitive view of the status (where accessible).

Holes – Visible Externally after Scale Rem.


Close-Up of Pitting

Presented by Stephen Tate – Technical Services and Projects – TOTAL **11** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

YEP ICorr Integrity Management

Examples of Failures – Oil and Gas Process Leaks

Humberside 2001 – Int. Erosion (New WI Pt)

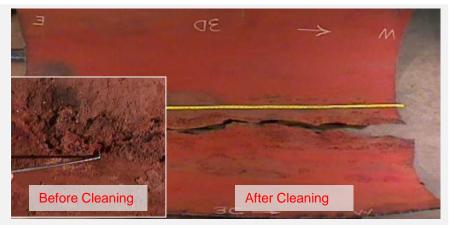
Sour Gas Leak 2011

Gas Explosion – Damage Adjacent Plant

Uniform ~ 90% corrosion of 8x bolts allowed nor. working pressure to fracture the bolts. Duct tape around Flange allowed "micro-environment" of H2S, CO2, heat / humidity.

BV Bolting Failure

Presented by Stephen Tate – Technical Services and Projects – TOTAL **12** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ


Examples of Failures – Pipelines

Gas Pipeline Failure – New Mexico 2000

Mississippi – Multiple Fatalities 2009

Internal BOL Corrosion – Common Cause

Resulting Hydrotest Failure

Presented by Stephen Tate – Technical Services and Projects – TOTAL **13** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Examples of Failures – Pipelines

- 29th July 1995
- Failure on a 42 inch grade X60 natural gas pipeline approx 3 km southeast of Rapid City Manitoba. (Pup was X65)
 - 19.6 m³ gas consumed by fire
- The initial rupture occurred as a result of a pre-existing stress corrosion crack (SCC).
- This piece of pipe had been fabricated in the field and coated with polyethylene tape.

With thanks to Alan Denney

Presented by Stephen Tate – Technical Services and Projects – TOTAL **14** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

YEP ICorr Integrity Management

Examples of Failures – Pipelines

21st March 2006

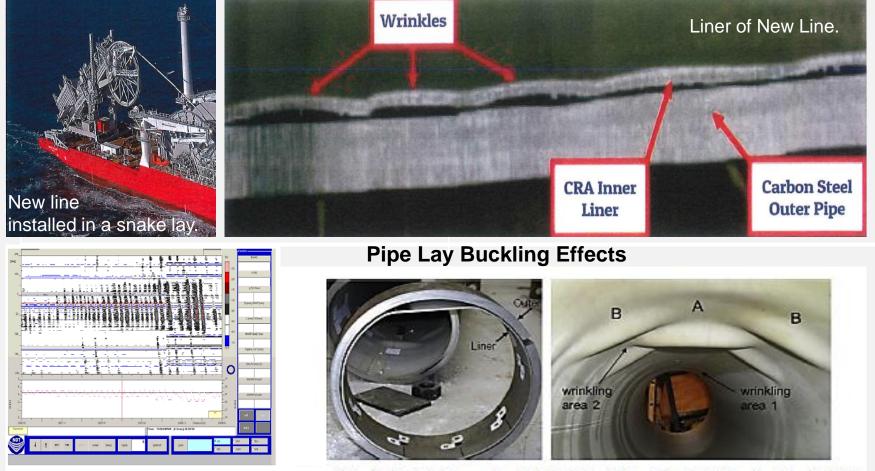
With thanks to Alan Denney

- Leak from Trans-Alaska pipeline
- At least 190000 litres of oil released onto tundra
- Corrosion at a point where line dips for Caribou to cross,
- corrosion rate had unexpectedly accelerated
- Prudhoe Bay oilfield closed down on 9th August 2006 losing 400000 barrels of oil/day production
- US\$12 million federal criminal fine,
- US\$4 million in criminal restitution to the state
- US\$4 million for Arctic research.
- BP Exploration (Alaska) Inc. on probation for three years.

Presented by Stephen Tate – Technical Services and Projects – TOTAL **15** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Examples of Failures – Pipelines

CASE - ILI (in Line Inspection) of North Sea Multiphase Export Line found line beyond continued service after only 10 yrs operations.


- Corrosion wall thickness Losses were so great 60-70%, that replacement was required.
- These corrosion defects were deduced to be related to CO² in the water.
- It was observed that despite of corrosion inhibitor (CI) injection; the areas within the pipe with BaSO⁴ scale acted as a filter and restricted inhibitor access to the inner wall of the pipe.
- The BaSO⁴ scale was of different thicknesses and in some areas permeable.
- A secondary corrosion mechanism was noted to be in operation where the scale was impermeable.
- The sections under scale became anodic with respect to the neighbouring un-scaled areas and the difference in galvanic potential lead to localized corrosion under the scale.

NDT Wave Form (ILI)

YEP ICorr Integrity Management

Examples of Failures – Pipelines

Lined pipe, (a) photo after experimental testing (Focke, 2007) and (b) wrinkled liner pipe (Hilberink, 2011).

Replacement Line has not leaked but requires careful Cleaning / Monitoring.

Presented by Stephen Tate – Technical Services and Projects – TOTAL **17** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Critical Dead Leg Management

Deposits to be Analysed

Failure Site and Sludge Below.

YEP ICorr Integrity Management

Drain Located Upstream of Export Biocide Injection – Loss of 2 Wk's Export

Presented by Stephen Tate – Technical Services and Projects – TOTAL **18** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

YEP ICorr Integrity Management

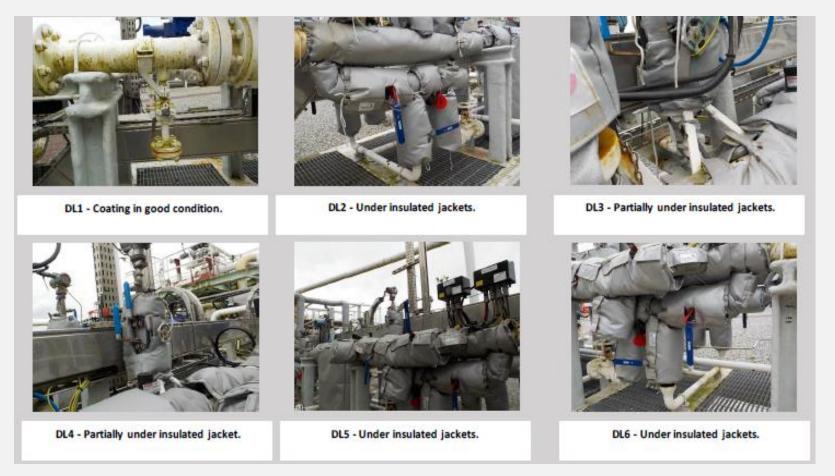
Dead Leg Management

DL4 - Coating in good condition.

DL5 - Minor isolated CD/CR throughout.

DL6 - Coating in good condition.

10-12 Piping Deadlegs per P&ID can be expected with Internal / External Corrosion Risks


Presented by Stephen Tate – Technical Services and Projects – TOTAL **19** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Dead Leg Management + CUI

YEP ICorr

Integrity Management


10-12 Piping Deadlegs per P&ID can be expected with Internal / External Corrosion Risks

Presented by Stephen Tate – Technical Services and Projects – TOTAL **20** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

YEP ICorr Integrity Management

Examples of Failures – Land Based Structures

The Broken Bridge of Italy – RC Failure

Safety Earthing – Typ. Galvanic Corrosion

Acoustic Emission * + Visual Inspection – Is being used to monitor Cable corrosion (up to 40% corrosion losses) + cracked nuts on Cable Bands. The adjacent replacement bridge (2017) cost ~1.5 billion.

* The project's purpose was to increase the likelihood of detecting wire breaks among the 11,618 individual high tensile steel wires that make up each cable.

Forth Road Bridge Cable Corrosion

Near Miss (2014) ! -Train travelling at 110 mph (177 km/h) struck the top of a signal which had col fallen lapsed and across the adjacent railway line near Newbury. Very luckily there were no injuries and the train did not derail.

Newbury Railway – Corroded Signal Base

Presented by Stephen Tate – Technical Services and Projects – TOTAL **21** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Examples of Failures – Offshore Structures

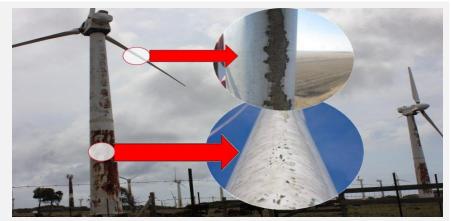
Caisson Failures – Pump and Drains

Walkway and Staircase Failures

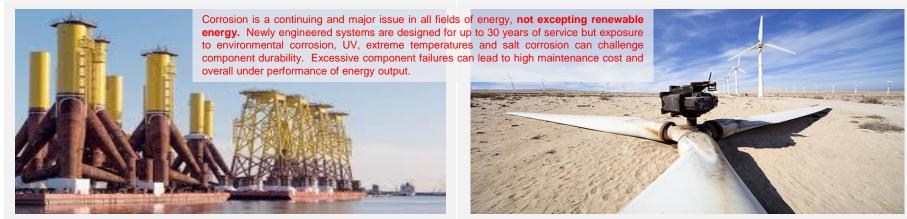
Boat Landings

Subsea Structural Failure

Presented by Stephen Tate – Technical Services and Projects – TOTAL **22** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

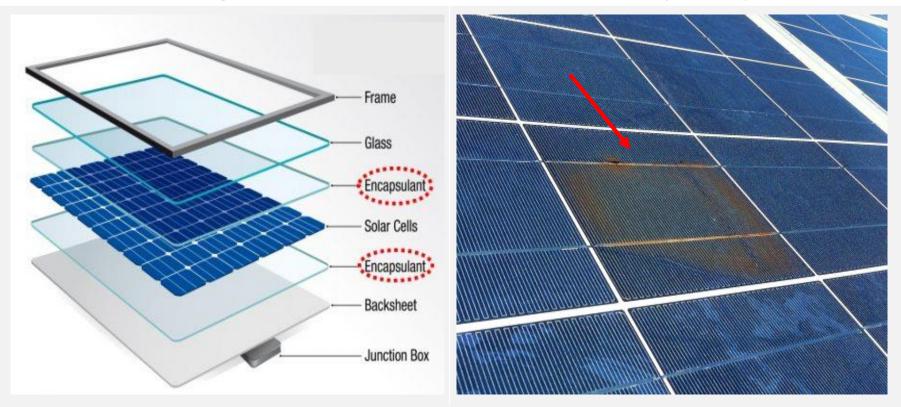

YEP ICorr Integrity Management

Examples of Failures - Renewables (Hydrogen / Wind / Solar)



Coatings Failure

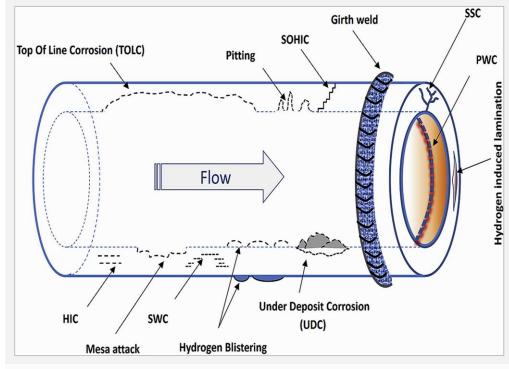
Blade Erosion


Load-out Integrity can be Short-lived

Atmospheric Corrosion

Presented by Stephen Tate – Technical Services and Projects – TOTAL 23 E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Examples of Failures – Renewables (Solar)



Browning is a change in color of the EVA film and occurs when certain additives used to prevent browning and enhance UV resistance, start to disappear. This can cause bleaching and blistering at the EVA film and the solar back-sheet, resulting in **Solar Cell Corrosion**.

Presented by Stephen Tate – Technical Services and Projects – TOTAL **24** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Potential Failures – Renewables (Hydrogen Transportation)

Lower Risk – Blending with Natural Gas (up to 15%) but this does not move much product !

Higher Risk – Single Product / Hydrogen use. Essential to under take full threats analysis and ILI run (ideally including some material sampling) if re-using a line. Historical records are often poor !

Pipelines used (or Re-used) for Hydrogen Transportation have many potential failure modes – both Internal and External. Worldwide there are more than 5000 km of hydrogen pipelines in total, the vast majority of which are operated by Hydrogen producers. **The longest pipelines are operated in the USA**, in the states of Louisiana and Texas, followed by Belgium and Germany. <u>https://hydrogeneurope.eu/hydrogen-transport-distribution</u> The most common causes of hydrogen-related hazardous failures are: **mechanical damage or damage due to material defects (from original manufacture), corrosion, enhanced embrittlement of storage tanks in low temperatures and human error (in operations).**

Presented by Stephen Tate – Technical Services and Projects – TOTAL 25 E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

CM Documentation

Presented by Stephen Tate – Technical Services and Projects – TOTAL **26** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Corr. Management – Key Elements

ROLE of CMS

It is the responsibility of the Operator to ensure that the required corrosion assessments, corrosion control strategies and corrosion monitoring processes are in place **so that the risk of loss of containment and equipment/structural failure is minimized. Many are SECE's (Safety Critical Elements)**

The **CMS - Corrosion Management Strategy** is a key document that defines the overall management approach but is supported by many other documents such as:

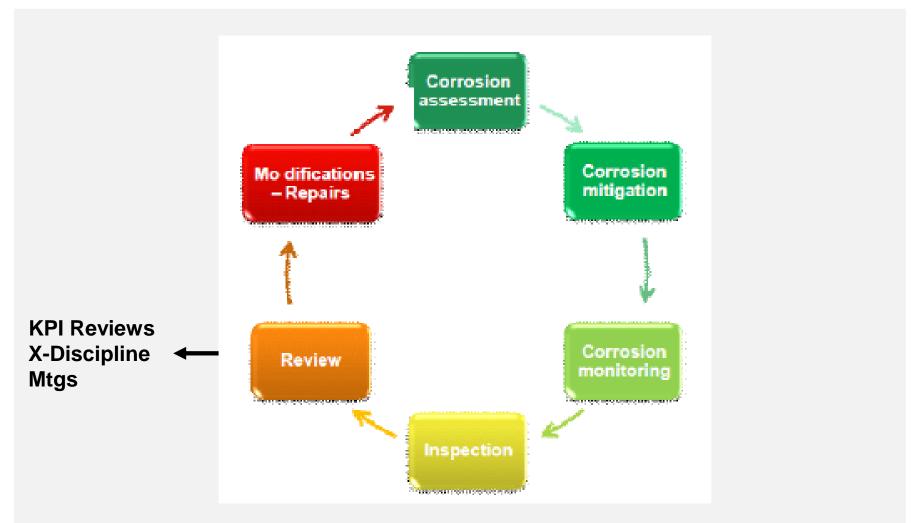
- Facility Specific Corrosion Control Schemes (with Monthly KPIs),
- Inspection Manuals,
- Chemical Treatment Manuals,
- Site Operating Instructions.
- **CMMS** (SAP or other) Computerized Maintenance Management System records all required Mitigations / Monitors / Inspections and their Frequency.
- Ea. routine will be prioritized according to assessed risk.

Corr. Management – Key Elements

Level 1 – Company Policies

Level 2 CMS - Key Elements:

- Defining Roles and Responsibilities.
- Defining Corrosion Control Strategy for ea. Facility operated.
- Defining Degradation Mechanisms.
- Defining Mitigations.
- Defining Performance Monitoring and Techniques.
- Defining Devices to be Deployed.
- Defining how Collected Data will be Measured / Stored / Interpreted.


Level 3 – Site Specific Corrosion Management Documentation.

Level 4 - Site Specific Work Instructions.

Simplified Cycle

Presented by Stephen Tate – Technical Services and Projects – TOTAL **29** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Review Meetings

Every Operating Asset will maintain Pipelines and Topsides KPI's and hold Regular Meetings involving:

- Production Chemist.
- Process Engineer.
- SMART Rm Operator.
- Corrosion Engineers.
- RBI Engineers.
- Inspection Leads.
- Materials and Welding TA.
- Pipelines TA.
- Pipelines Engineers.
- HSE representatives.
- Other Disciplines (as req.) E.g. SECE Owners.

These meetings are a key part of the CMS Implementation.

Corr. Management – Reading

Recommended Further Reading:

- El's Guidance on corrosion management in oil and gas production and processing, Mar.2019, provides general principles and essential engineering guidance and requirements for improving corrosion management practices in oil and gas production and processing. It has been produced by an experienced oil and gas industry work group with the objectives of:
 - Reducing the number of corrosion related hydrocarbon releases and other safety related and environmentally damaging outcomes.
 - Identifying good practices for setting up an optimal corrosion management scheme.
 - Providing an overview of the top corrosion threats to production and processing facilities downstream of wellheads.
 - Improving the safety profile of hydrocarbon installations.
 - Improving equipment reliability.
 - Improving equipment availability.
 - Improving profitability.

Building on the previous edition, which was recognized in the HSE KP4: Ageing and Life Extension Programme as a major contribution to the industry's successes in addressing corrosion issues

• Guidelines for the Management of Access Fittings for Pressurised Systems. Energy Institute, Aug.2020.

Risk Assessment

Presented by Stephen Tate – Technical Services and Projects – TOTAL **32** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

RBI Documentation / Corr. Management

Risk is a function of **combining**:

- **Probability** of an event
- Consequence of the event

For low risk we control: the probability of failure or the consequences

- Many aspects of risk are controlled at design stage
- Limiting risk by limiting stresses, strength and toughness of line pipe
- Limiting consequences by classification of location, and proximity controls.
- Assessing consequences, according to pipeline type and situation.
- Qualitative, Quantitative and Semi-Quantitative Tools + PIMS + Plans

Presented by Stephen Tate – Technical Services and Projects – TOTAL **33** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

RBI Documentation / Corr. Management

- Database development to cover risk and inspection planning
- Analysis to establish the major threats to the pipeline
- Preliminary risk analysis
 - Probability estimation
 - Consequence estimation
- Detailed investigations to confirm risk estimates for critical sites
- Failure modes and Effect Assessment to define appropriate inspection methods
- Development of the RBI plan and database
- Implementation of RBI
- From outcome of inspection plan and organise remedial activities (maintenance etc)
- Re-assessment of risks and updating the database accordingly

In most systems, a large portion of risk is concentrated on relatively few items or areas. RBI assigns correspondingly high levels of inspection and monitoring.

Implementation is the hardest part of any RBI exercise – Many Internal Inspections now replaced by NII.

Presented by Stephen Tate – Technical Services and Projects – TOTAL **34** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Specialised RBI Software – Last 20yrs

COFFEE Break / 15 mins

Presented by Stephen Tate – Technical Services and Projects – TOTAL **35** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Programme for Tonight – Part 2

Tools for monitoring corrosion (and erosion).

Corrosion monitoring methods for process systems.

Ultrasonic and other NDT based methods (prev. covered by Alan Denney). Acoustic methods and Advanced WT Monitors.

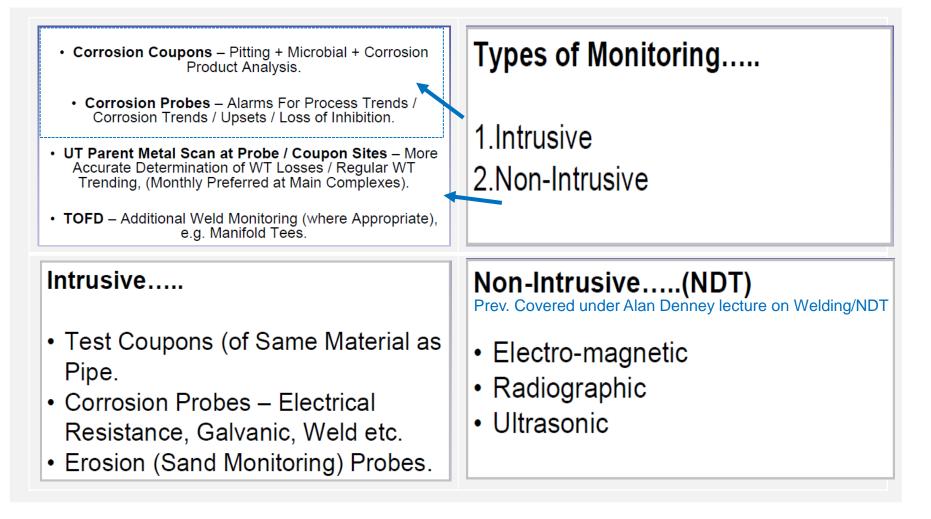
Over the line surveys of pipelines.

Internal inspection methods - pipelines and floating units.

Future Inspection / Post COVID Trends,

Q&A Part 2 (questions entered into CHAT). Closing Remarks.

Presented by Stephen Tate – Technical Services and Projects – TOTAL **36** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ



Corrosion Monitoring Methods for Process Systems.

Presented by Stephen Tate – Technical Services and Projects – TOTAL **37** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Tools for Monitoring Corrosion / Erosion

YEP ICorr Integrity Management

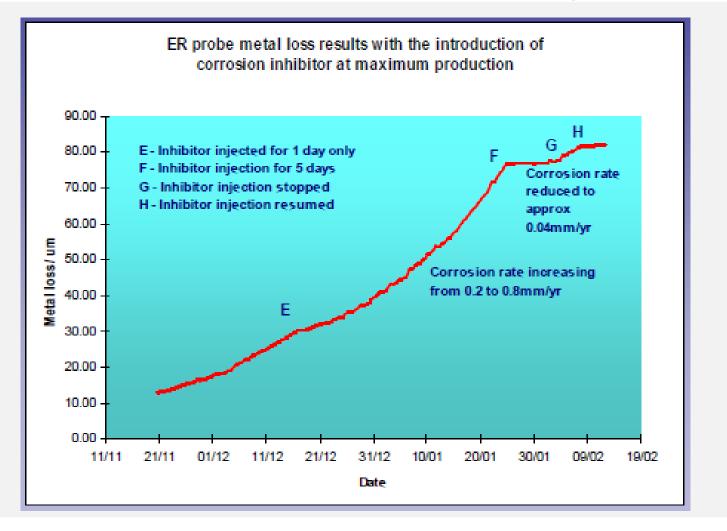
Corrosion Coupons

- 1. A Coupon is not a direct measurement of wall loss but remains a useful guide to process trends and process 'corrosivity.
- 2. An insulating washer separates the test coupon from the coupon holder and the pipe wall itself.
- Coupons should be pulled at least annually for Examination / Weight Loss Measurement / Micro Swabbing.

Presented by Stephen Tate – Technical Services and Projects – TOTAL **39** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

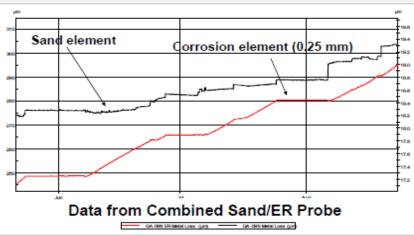
Corrosion Probes

- Electrical Resistance probes (when used for Corrosion Monitoring), monitor material loss directly* and do not require a continuous conductive path. Therefore the ER technique can be used to monitor corrosion in areas where water wetting is not continuous or under deposits where conductive may be limited.
- The replacement interval for electrical resistance probes is dependant on probe sensitivity and the corrosion rate. Readings from ER probes will be obtained manually or automatically via an offline or online logging system (PI).


ER Electrical Resistance Probe – is used to track rates of metal loss. The probe directly measures the <u>increase in resistance</u> of a metal as its <u>cross-sectional</u> area is reduced by corrosion. At suitable times, after probe bedded-in readings can be converted into corrosion rates

Presented by Stephen Tate – Technical Services and Projects – TOTAL **40** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

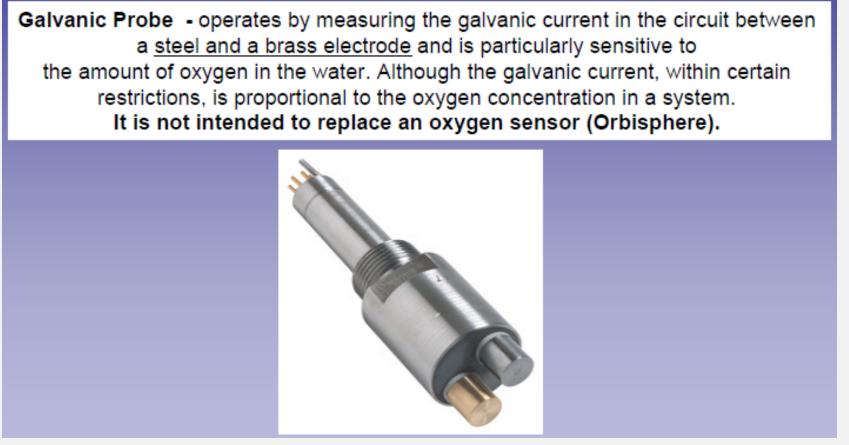
ER Probes used for CI Dosing Op.



Presented by Stephen Tate – Technical Services and Projects – TOTAL **41** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

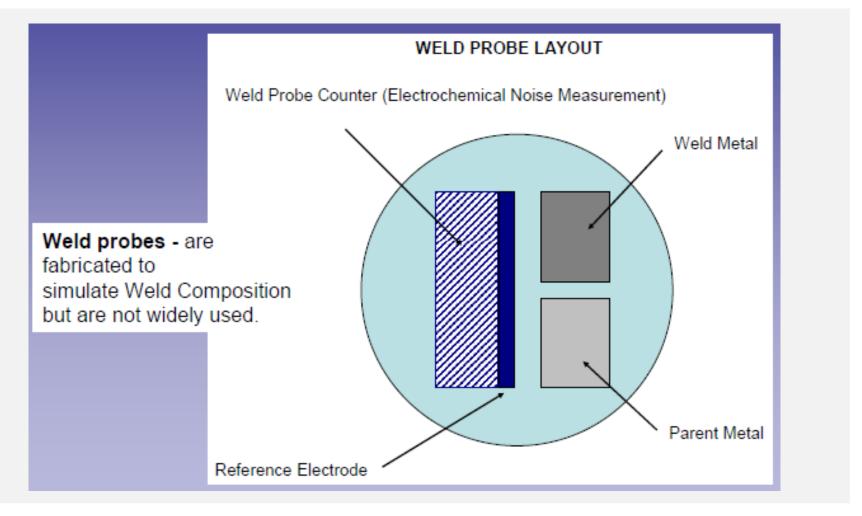
Erosion Probes

- ER probes of stainless steel, with similar mechanical properties as for the pipe that is the subject for monitoring. Hence the erosion sensors will not corrode and all material loss and can then be attributed to erosion.
- 1. Often there is little general evidence of solids posing a serious problem, other than very locally at Choke Valves / Sudden Geometry Changes.

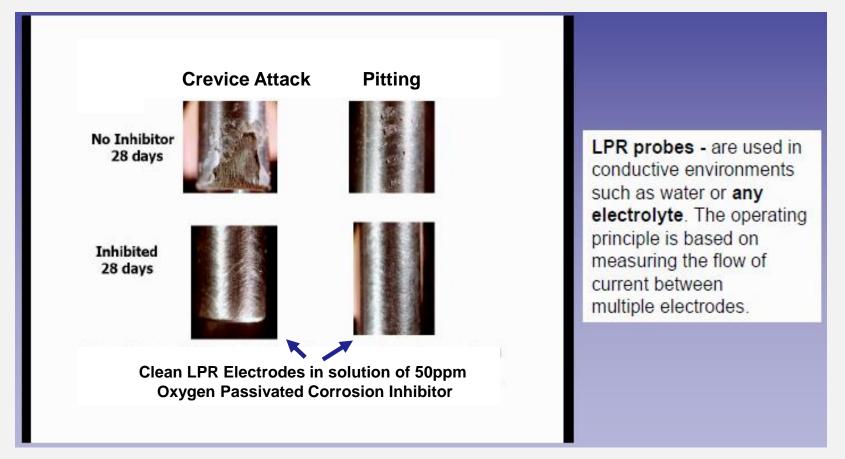


Presented by Stephen Tate – Technical Services and Projects – TOTAL **42** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Galvanic Probe

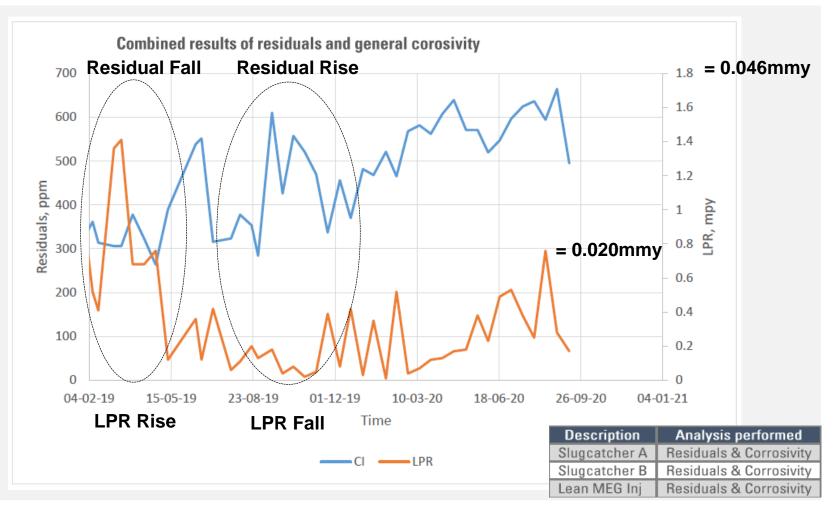

Less Commonly Used – Mainly in WI Systems

Presented by Stephen Tate – Technical Services and Projects – TOTAL **43** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ


Weld Probe

Presented by Stephen Tate – Technical Services and Projects – TOTAL **44** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

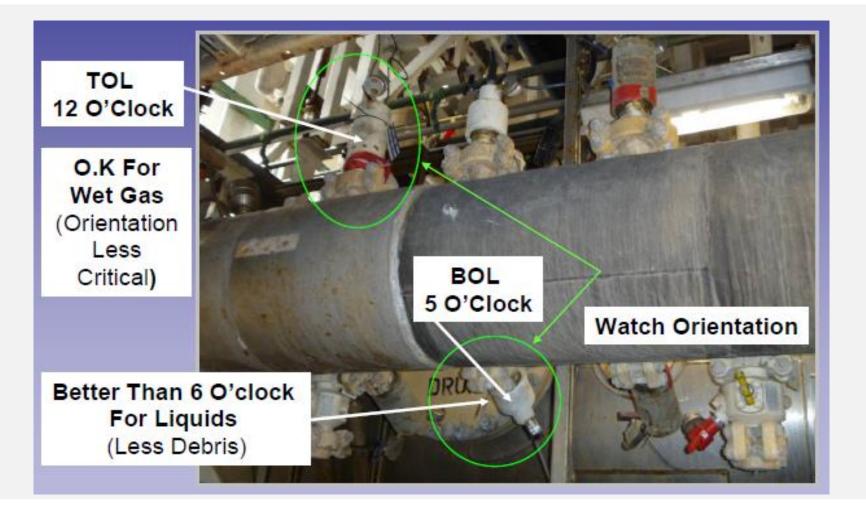
Linear Polarization Resistance (LPR) Probes



Less Commonly Used – More for Laboratory Use

Presented by Stephen Tate – Technical Services and Projects – TOTAL **45** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Linear Polarization Resistance (LPR) Probes

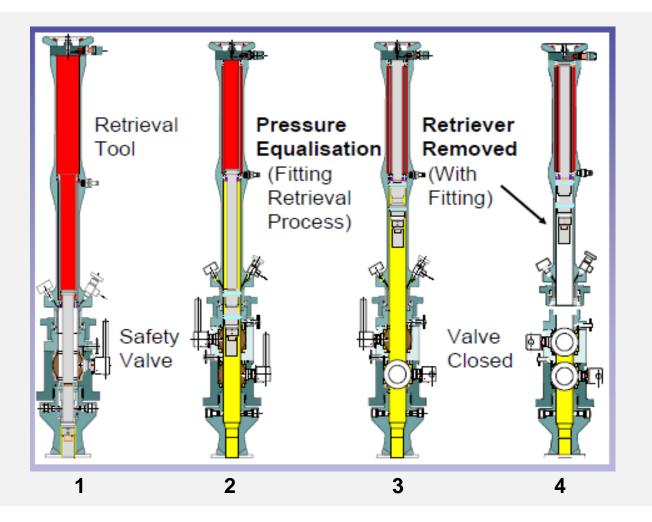


Presented by Stephen Tate – Technical Services and Projects – TOTAL **46** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Positioning



Presented by Stephen Tate – Technical Services and Projects – TOTAL **47** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

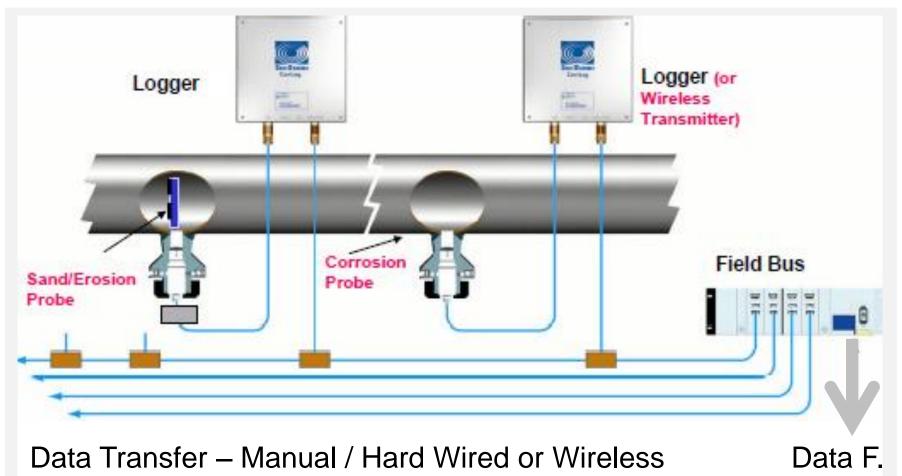

Positioning

Presented by Stephen Tate – Technical Services and Projects – TOTAL **48** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Fitting Removal

Presented by Stephen Tate – Technical Services and Projects – TOTAL **49** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

YEP ICorr Integrity Management


Wide Range of Access Fittings Available

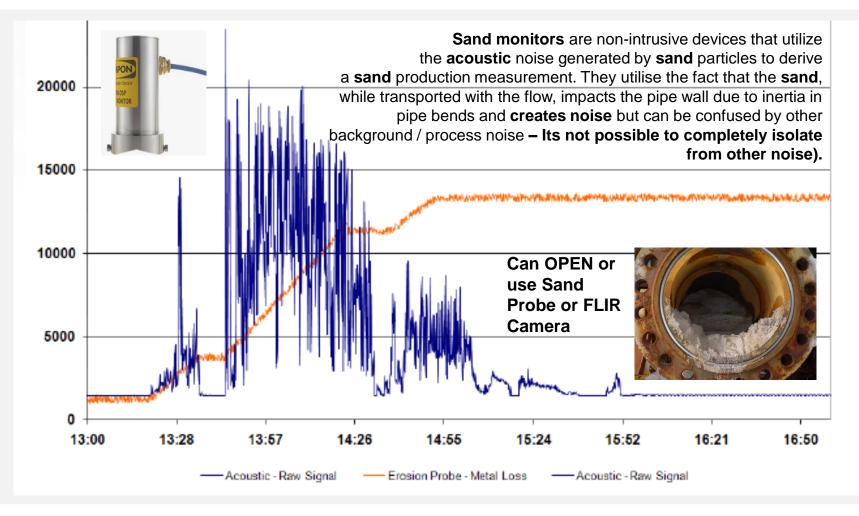
Presented by Stephen Tate – Technical Services and Projects – TOTAL **50** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Probe Data Transfer

Presented by Stephen Tate – Technical Services and Projects – TOTAL **51** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

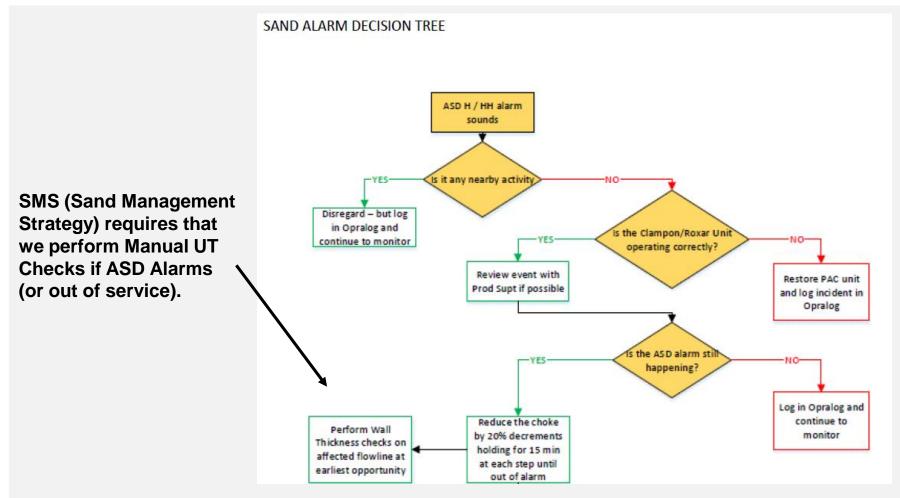
Modern System

Presented by Stephen Tate – Technical Services and Projects – TOTAL **52** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ



Acoustic Methods and Advanced WT Monitors

Presented by Stephen Tate – Technical Services and Projects – TOTAL **53** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ


Acoustic – Other Means req. to Confirm

Presented by Stephen Tate – Technical Services and Projects – TOTAL **54** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

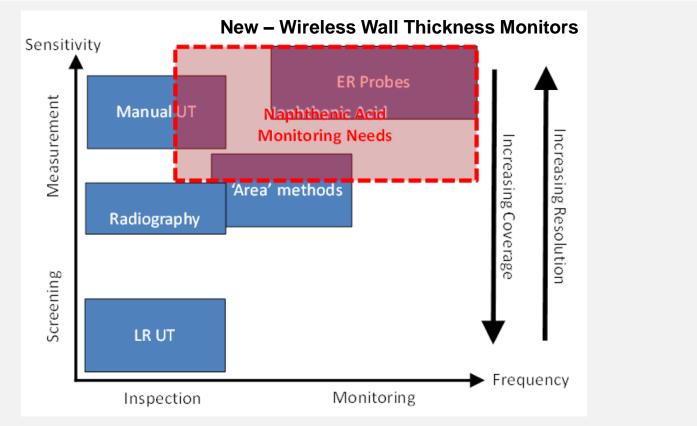
Acoustic / Manual Verification

Presented by Stephen Tate – Technical Services and Projects – TOTAL **55** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Wireless Acoustic Replacements

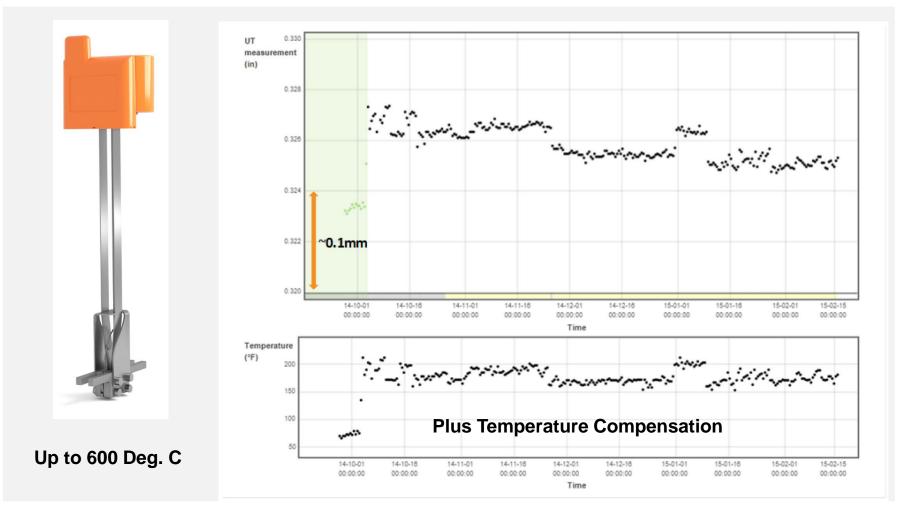
Corrosion Monitoring Update – CGA

Permasense Trials – Probes (West Franklin)


Extremely useful on Flowlines of NUI's – Normally Unmanned Installations (where the Cost of sending UT Inspector is very High)

> Presented by Stephen Tate – Technical Services and Projects – TOTAL **56** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Novel NDT Wall Thickness Monitors



The diagram above shows this categorization of the various technologies, including intrusive (ER) corrosion probes and manual ultrasound (UT) described in the previous section, according to whether it is a screening or a measurement technique, and whether it can be used for inspection purposes or for monitoring purposes.

Presented by Stephen Tate – Technical Services and Projects – TOTAL **57** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Increased Accuracy v. Manual UT

Presented by Stephen Tate – Technical Services and Projects – TOTAL **58** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Inspection Methods – Pipelines

Presented by Stephen Tate – Technical Services and Projects – TOTAL **59** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Pipeline Incidents are very rare and reported in:

European Oil and Product Pipelines

- CONCAWE (Conservation of clean air and water in Europe).
- Crude oil and petroleum products.
- European Gas Pipelines

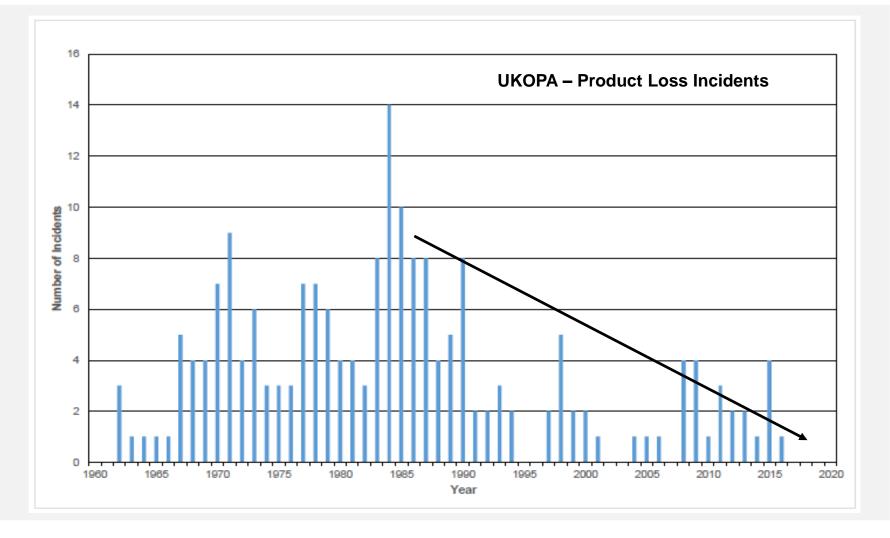
EGIDG (European Gas Incident Data Group).

- Every 3 years
- British Oil and Gas Pipelines

UKOPA (UK Onshore Pipeline Operators' Association).

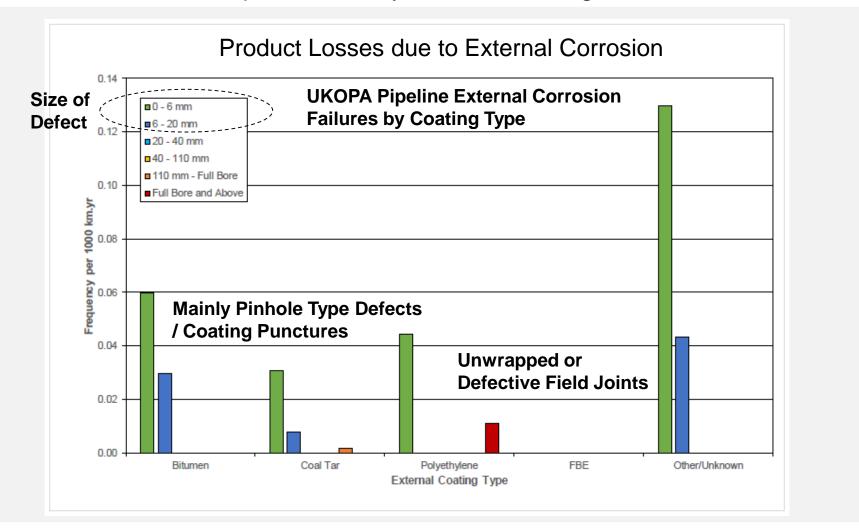
• Published annually.

USA – Office of Pipeline Safety(OPS)

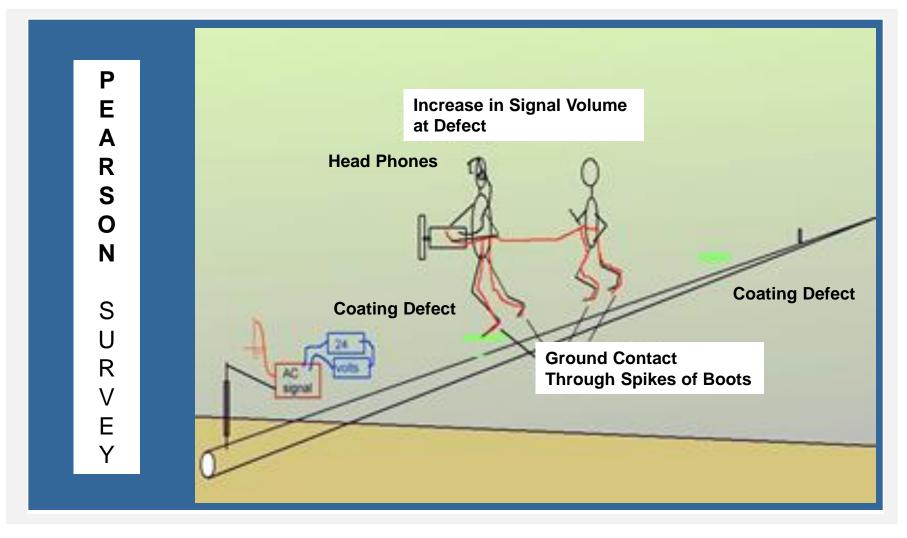

- Part of U. S. Department of Transportation, Pipeline and Hazardous Materials Safety Administration.
- Published annually

Normally, integrity faults are captured ahead of failure.

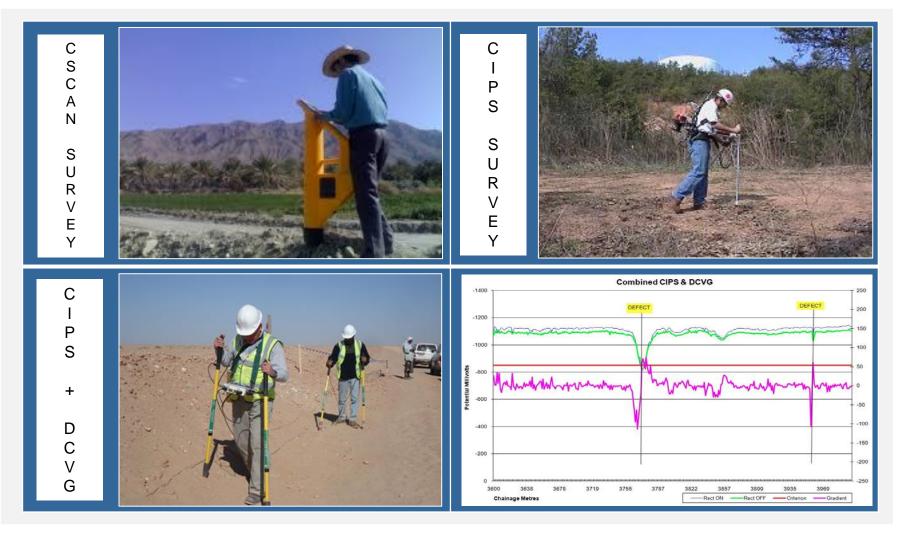
Presented by Stephen Tate – Technical Services and Projects – TOTAL **60** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ



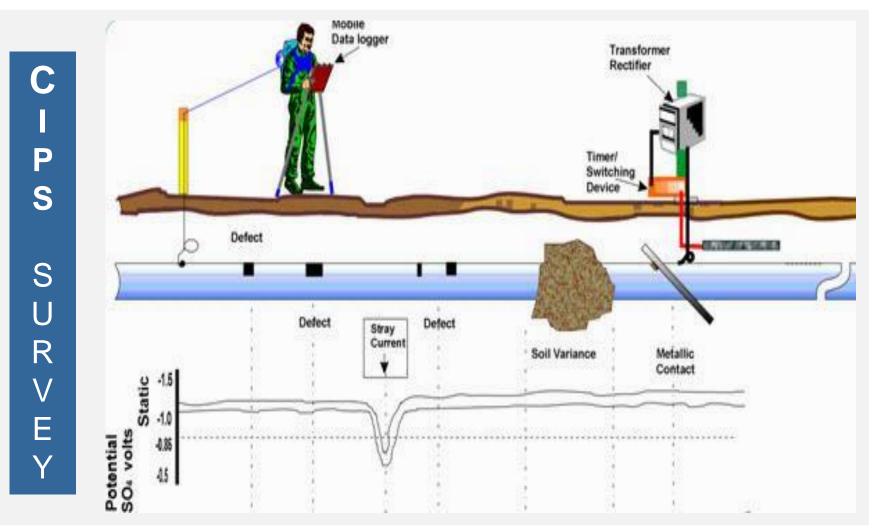
Presented by Stephen Tate – Technical Services and Projects – TOTAL **61** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

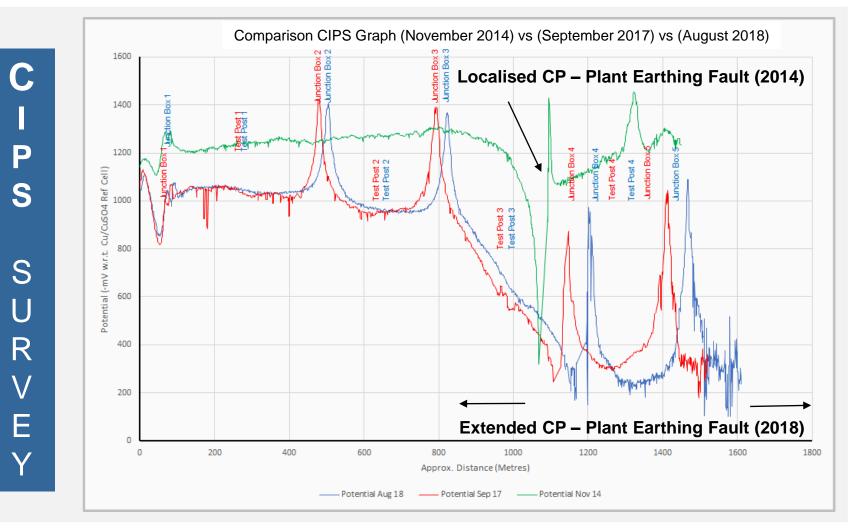


Presented by Stephen Tate – Technical Services and Projects – TOTAL **62** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ



Presented by Stephen Tate – Technical Services and Projects – TOTAL **63** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ




Presented by Stephen Tate – Technical Services and Projects – TOTAL **64** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Presented by Stephen Tate – Technical Services and Projects – TOTAL **65** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Presented by Stephen Tate – Technical Services and Projects – TOTAL **66** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Pre ILI Geometry Pig

YEP ICorr Integrity Management

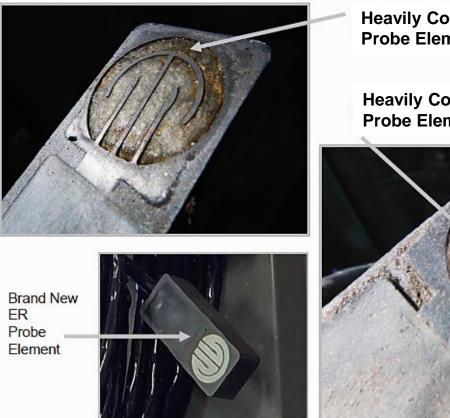
Pipeline Surveys / Fault Finding

Pre Cleaning Pig

Presented by Stephen Tate – Technical Services and Projects – TOTAL **67** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

YEP ICorr Integrity Management

Pipeline Surveys / Fault Finding


ILI Runs are extremely FEATURE TYPE A = Mini Pinhole (12mm Ø) expensive, typically B = Pinhole (18.2mm Ø) GP2 = General Corrosion + 2mm Pits GP5 = General Corrosion + 5mm Pits C = Pit (55mm Ø) >£0.5M + any D = Circumferential Gouge (55mm x 164mm) 1 x 20mm Ø hole associated loss of U/S end @ TDC GP6 = General Corrosion + 6mm Pit E = Axial Gouge (164mm x 55mm) Production F = General Corrosion (110mm x 110mm) 2 x 20mm Ø holes D/S end @ TDC 9 G = General Corrosion (220mm x 220mm) GP4 = General Corrosion + 4mm Pits Gen Corr depths are indicated on drawing. All Pits are 55mm Ø G 4mm D 6mm A 4mr 6 o'clock E 2mm 7 o'clock G 6mm B 3mm C.2mm 8 o'clock F3mm D 3mm A 2rom 9 o'clock G 3mm E 3mm 10 o'clock F 6mm B.2mm C.6mm 11 o'clock G 5mm D 4mm A 6mm TDC - 5mr E 6mm 1 o'clock G 1mm B.4mm C 4mm 2 o'clock E 2mh D 2mm A 3mm 3 o'clock A pull through run on G 2mm 4 o'clock E 4mm F4mm a Test Piece with B 6mm C 3mm 5 o'clock 6 o'clock machined Defects is 1000 1500 2000 2500 3500 4000 4500 5000 5500 6000 3000 often used to assess 6 o'clock GP5 7 o'clock an ILI Tool before use. 8 o'clock GP6 GP2 9 o'clock 10 o'clock 11 o'clock GP4 GP TDC 1 o'clock 2 o'clock GP5 3 o'clock GP5 4 o'clock 1mm 5 o'clock GP4 GP 6 o'clock 11000 6500 7000 7500 8000 8500 0000 9500 10000 10500 12000

> Presented by Stephen Tate – Technical Services and Projects – TOTAL **68** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Assessing External Corrosion Risks

AFTER ~ 6M BURIAL

Heavily Corroded / Dissolved ER Probe Element

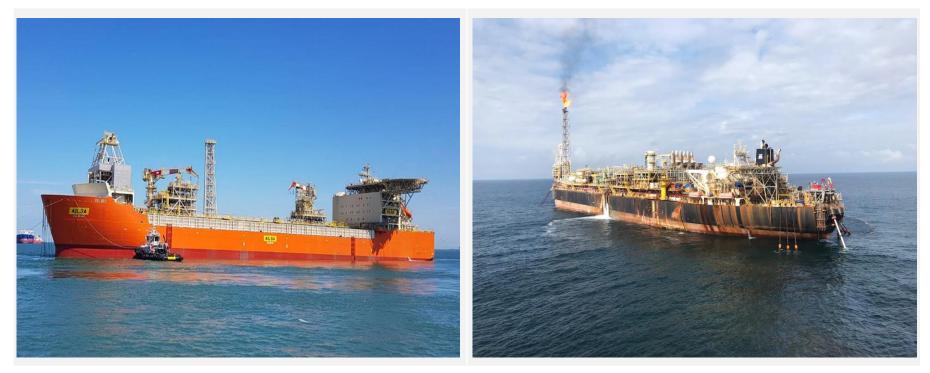
Heavily Corroded / Dissolved ER Probe Element

Presented by Stephen Tate – Technical Services and Projects – TOTAL **69** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Effects of Plant – Copper (Cu) Earthing Connections

	Location Tag	Corrosion Rate	Extended Period Corrosion Rate	Metal Loss	Probe Span	% Life Left
	JB5 Carbon Steel	203.9 µmpy	406.8 µmpy	382.26 μm	508 μm	24%
	JB5 Duplex	Negligible	0.4123 μmpy	16.13 μm	508 μm	96%
	JB4 Carbon Steel	1420 μmpy	448.2 μmpy	508 μm	508 μm	0%
	JB4 Carbon Steel Period 1	-	583.2 µmpy			
	JB4 Carbon Steel Period 2	-	754.5 µmpy			
	JB3 Carbon Steel	2.818 µmpy	1.49 µmpy	14.47 μm	508 µm	97%
	JB2 Carbon Steel	0.492 µmpy	0.7631 μmpy	23.8 µm	508 µm	95%
	JB1 Carbon Steel	Negligible	2.105 μmpy	16.4 μm	508 μm	96%

Presented by Stephen Tate – Technical Services and Projects – TOTAL **70** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ


Inspection Methods – Floating Units

Presented by Stephen Tate – Technical Services and Projects – TOTAL **71** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

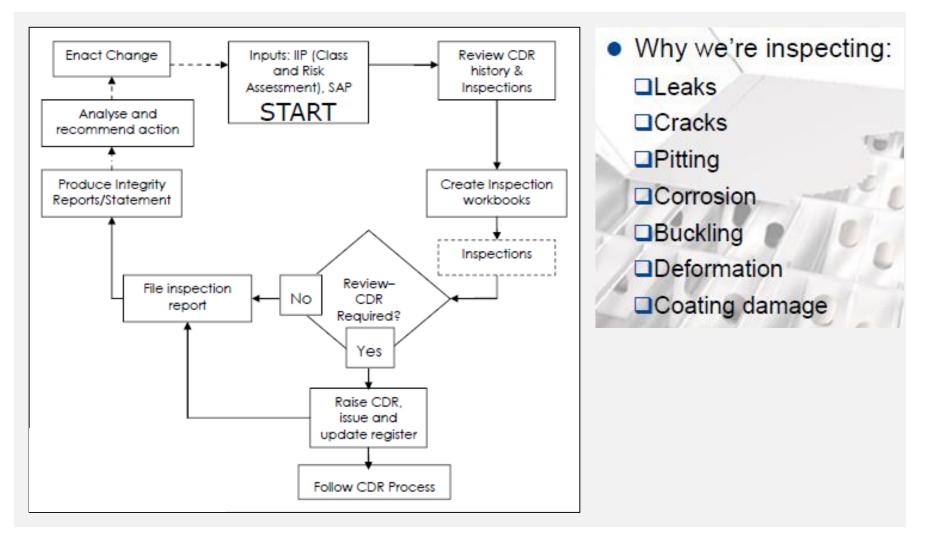
Inspection of Floating Units

Pre – Service Condition

Post – Service Condition

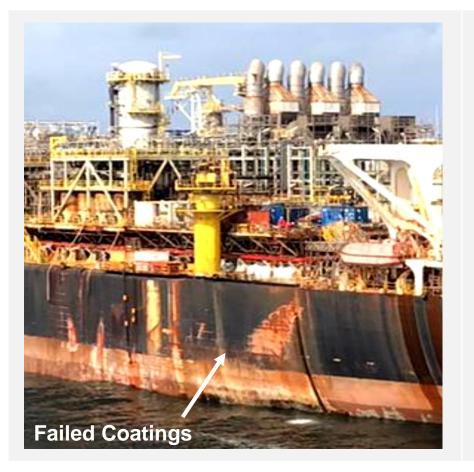
Presented by Stephen Tate – Technical Services and Projects – TOTAL **72** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

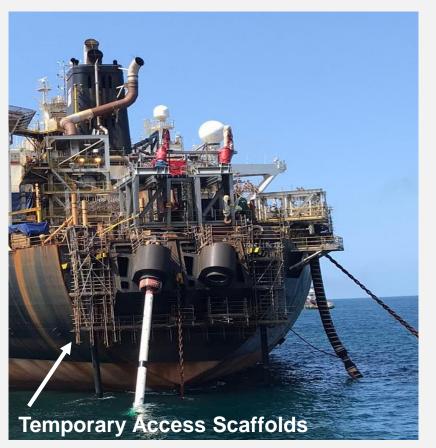
CLASS REQUIREMENTS


- Traditionally, all cargo and ballast tanks require full inspection every 5 years (unless risk based).
- DNVGL General Visual Inspections (typically taking around half a shift), followed by Rope Access Team (RAT) inspections to perform Close Visual Inspection work at height and to take thickness readings.
- The RAT inspections will also look at the "Special Areas" (usually fatigue hot spots) and pipework.
- Ideally, DNVGL and our own inspection team are onboard at the same time.

Inspection of Floating Units

YEP ICorr


Integrity Management

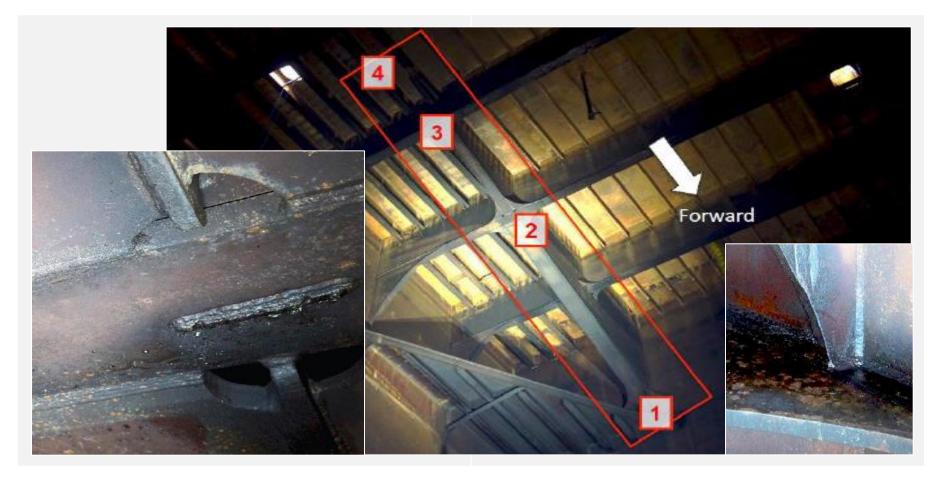


Presented by Stephen Tate – Technical Services and Projects – TOTAL **74** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

FPSO

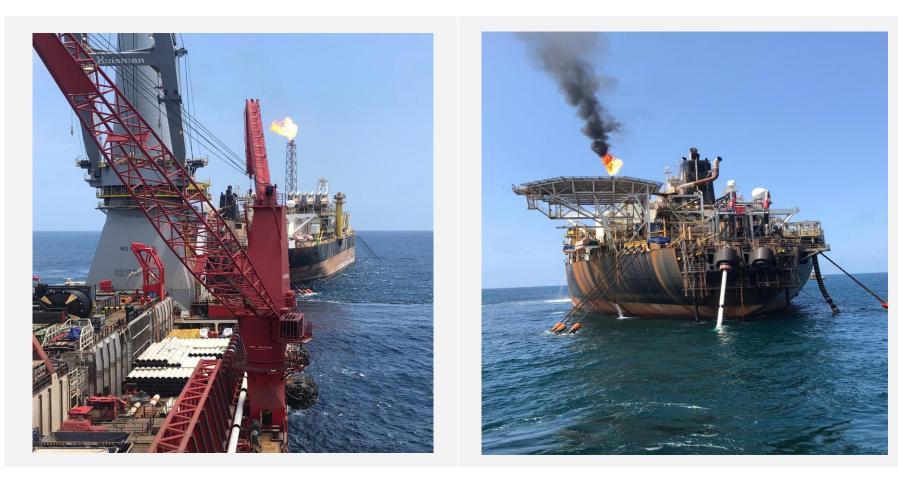
Maintenance Support Vessel

Presented by Stephen Tate – Technical Services and Projects – TOTAL **75** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ


Often Difficult Access for FPSO / FSO Vessel Inspection

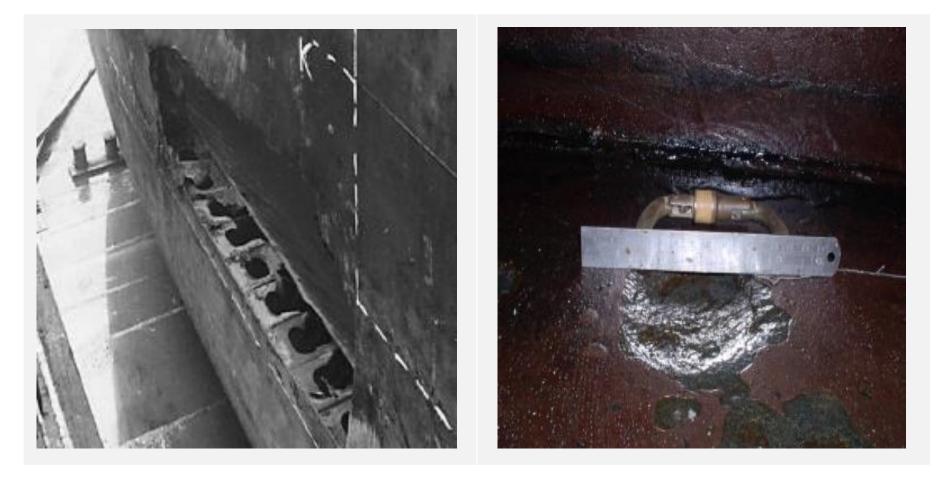
Presented by Stephen Tate – Technical Services and Projects – TOTAL **76** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

YEP ICorr



Complex / Labour Intensive Structural Inspections

Presented by Stephen Tate – Technical Services and Projects – TOTAL **77** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ


Maintenance Support Vessel

Presented by Stephen Tate – Technical Services and Projects – TOTAL **78** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

In Situ Structural Repairs can be very costly

Presented by Stephen Tate – Technical Services and Projects – TOTAL **79** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Inspection of Structures

Structural Integrity Definitions

Primary Structures

Primary Structure consists of the structural members that form the main load paths to the piled foundations, the failure or impairment of which may lead to extensive structural deformation, significant reduction of the load bearing capacity of the structure globally and potentially result in progressive collapse.

Secondary Structures

Secondary structure consists of the various forms of steelwork which transfer global and local loading to the primary structure, the failure of which may not results in global structural failure but would results in localised deformation and reduction of load bearing capacity.

Tertiary Structures

Tertiary structures consist of key non-load bearing structures which do not contribute towards transferring global or local loadings, which however are components of SCE's and serve as a vital function for an appropriate working environment.

Safety Structures

Safety structures may not form a specific structure but exist as a part of a structure or group of structures that combine to form whole or a part of a safety system. These may be defined as areas and components supporting safety equipment, life saving appliances and means of escape.

Non-Structural Attachments & Assemblies

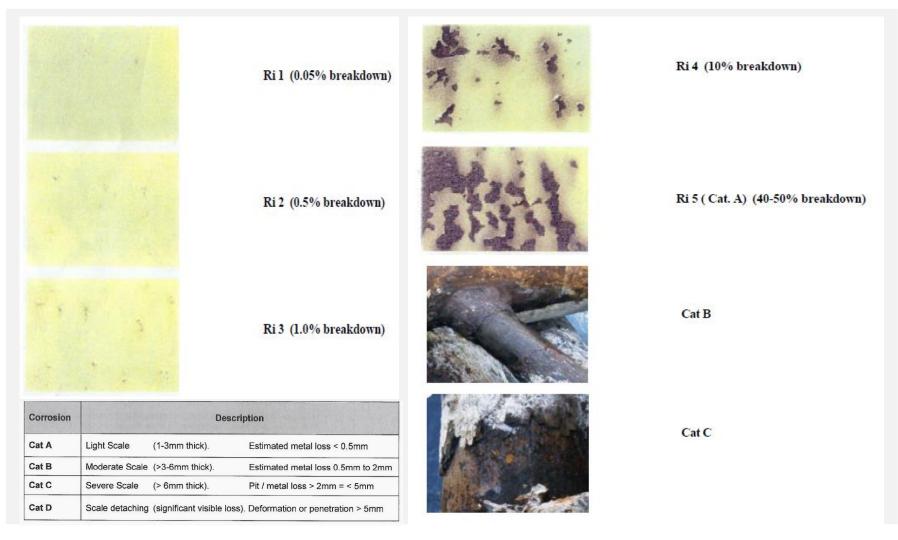
Non-Structural Attachments & Assemblies consist of minor attachments and assemblies which do contribute towards transferring global or local loadings and are not necessarily essential components of SCE or Safety systems. They may however provide support for system components or provide a nonvital function for providing an appropriate working environment. Typical Subsea Inspection frequency of offshore structures

4 years-high exposure 5 years-medium exposure 6 years -low exposure

Offshore Structure Corrosion Assessment Techniques :

YEP ICorr

Integrity Management


-Acoustic emission testing -Alternating current frequency measurement (ACFM) -Gamma ray flooded member detection (FMD) •CP Measurements -Anode counts and anode depletion -potential measurements -Coating Surveys

Presented by Stephen Tate – Technical Services and Projects – TOTAL **80** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

YEP ICorr Integrity Management

Inspection of Coatings

Presented by Stephen Tate – Technical Services and Projects – TOTAL **81** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Inspection of Coatings

FABRIC MAINTENANCE

- Keep on top of it to prevent much larger costs in future
- Must be seen to be addressing Asset Life Extension (KP4) balanced by realistic CoP dates.
- Knowing what happens at the end of field life is also a key input

Presented by Stephen Tate – Technical Services and Projects – TOTAL **82** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Future Inspection / Post COVID Trends

Presented by Stephen Tate – Technical Services and Projects – TOTAL **83** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

YEP ICorr Integrity Management

Use of DRONES for Internal / External Inspections

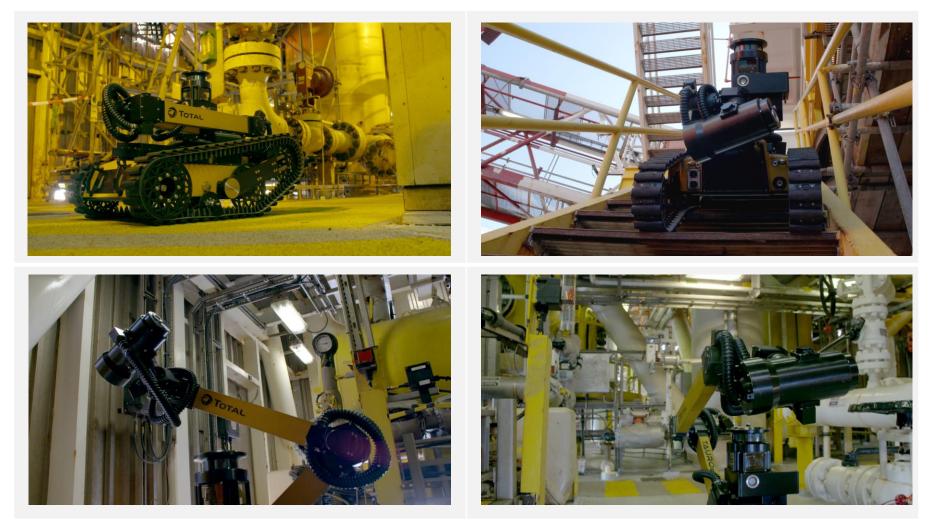
Presented by Stephen Tate – Technical Services and Projects – TOTAL **84** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

YEP ICorr Integrity Management

Use of DRONES for Internal / External Inspections

Presented by Stephen Tate – Technical Services and Projects – TOTAL **85** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

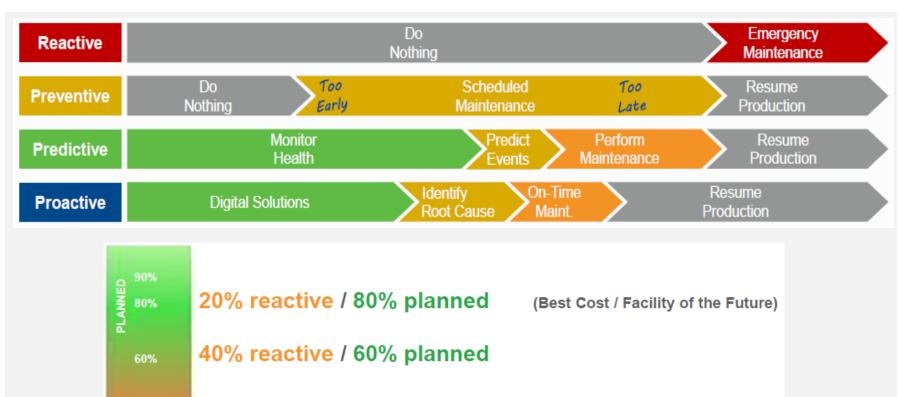
PIPELINE DRONES



Presented by Stephen Tate – Technical Services and Projects – TOTAL **86** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

YEP ICorr Integrity Management

Offshore Inspection Robots



Presented by Stephen Tate – Technical Services and Projects – TOTAL **87** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

40%

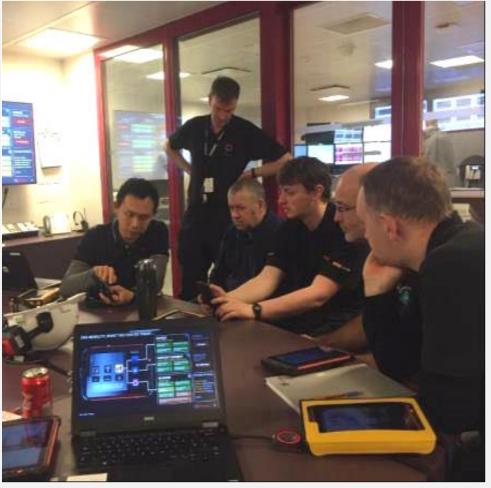
REACTIVE 50%

60% reactive / 40% planned (Today's Average Facility)

80% reactive / 20% planned

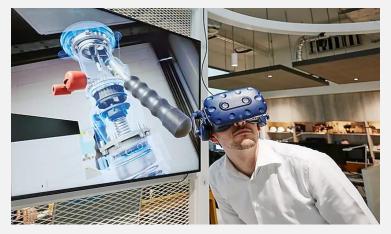
Presented by Stephen Tate – Technical Services and Projects – TOTAL **88** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

YEP ICorr Integrity Management


AI / CONDITION MONITORING Sensors for System Health

Presented by Stephen Tate – Technical Services and Projects – TOTAL **89** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

REMOTE Working / Avoid Visits / AR



Shell – "Technologies like Augmented Reality (AR) and Virtual Reality (VR) can unlock business value for our operations across the entire lifecycle of a project, from initial planning through construction to operations".

YEP ICorr

Integrity Management

Improved information Flow - SME's (Subject Matter Experts) to Field Technicians and for Training them.

Presented by Stephen Tate – Technical Services and Projects – TOTAL **90** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Q&A Session

Presented by Stephen Tate – Technical Services and Projects – TOTAL **91** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Q. How can Drones be used more in Hazardous Areas?

A. Things do seem to be moving in that direction recently but removal of all explosive contaminants prior to work, would be an essential pre-requisite.

Refer: https://www.flyability.com/articles-and-media/can-a-drone-be-used-as-a-formal-inspection-tool

Q. Boat Landings, how can these be better protected ?

A. Elastomeric Coatings are one option.

Refer: https://www.teknos.com/industrial-coatings/showroom/protecting-worlds-largest-offshore-wind-farms-turbine-foundations-with-elastomeric-polyurea-coating

Refer: http://www.armawrap.com/corrosion.htm

Refer: https://www.onepetro.org/conference-paper/SPE-193241-MS

Q. Has artificial intelligence any part in the monitoring process?

A. Yes, this certainly appears to be a developing area.

Refer:

tps://www.researchgate.net/publication/268522546_Artificial_Intelligence_for_the_Assessment_on_the_Corrosion_Conditions_Diagnosis_of_Transmission_Line_Tower_Foundations_

Q. CP and coating surveys (subsea and splash zone areas)– how would AI fit in here?

Refer: https://www.offshore-mag.com/business-briefs/equipment-engineering/article/14174786/artificial-intelligence-emerging-as-useful-tool-for-assessing-marine-coating-conditions

A. Again, this does seem to be a rapidly developing area:

Presented by Stephen Tate – Technical Services and Projects – TOTAL **95** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Q. We have sacrificial anodes which will be inspected visually and 'estimate' the wastage. Do you think there will be another way we can check this out more thoroughly?

A. The FORCE Figs System would a good method I suggest.

EXPOSED STRUCTURES AND PIPELINES	Stabber/ Proximity/ Drop Cell	Cell to Cell	Dual Cell (Field Gradient)	FiGS (Field Gradient)
Potential profile	Possible	Possible	Not Possible	Possible
Anode current	Not Possible	Not Possible	Possible	Possible
Anode wastage	Not Possible	Not Possible	Possible	Possible
Coating damages	Not Possible	Limitations	Limitations	Possible
Steel current density	Not Possible	Not Possible	Limitations	Possible
Current drain to e.g. piles, wells & substructures	Not Possible	Not Possible	Limitations	Possible
Outer sheat damage on flexible pipes	Not Possible	Not Possible	Not Possible	Possible
Correction of pipe routing	Not Possible	Not Possible	Not Possible	Possible

Presented by Stephen Tate – Technical Services and Projects – TOTAL **96** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ

Q. How can we check effectiveness of all these anodes (i.e. throwing power) throughout say a structure and feed it into a Digital Twin?

A. Beasy Software are well established in this area and worth consulting with.

Refer: https://www.beasy.com/digital-twin.html

Q. Do you think there are 'smart' probes we can potentially use say to get the potentials at different parts of the structure? This could be for both ICCP and SACP.

A. Suggest FORCE as above.

Q. You also mentioned in one of your slides an issue surrounding defective field joints. There has been a lot of talk for subsea on going away without FJC – did the defect on the FJC correspond to high WT loss?

A. Not on this occasion and I have seen other unwrapped Field joints located from C-Scan Overline Surveys without Ongoing corrosion (not always lucky though). If it is a small dia. pipeline and the unwrapped joint is of low surface area, it could receive corrosion protection from the ICCP system.

Thank you for Attending – You may send any further questions to: stephen.tate@external.total.com

Presented by Stephen Tate – Technical Services and Projects – TOTAL **100** E&P UK Limited, Total House, Tarland Road, Westhill, AB32 6JZ