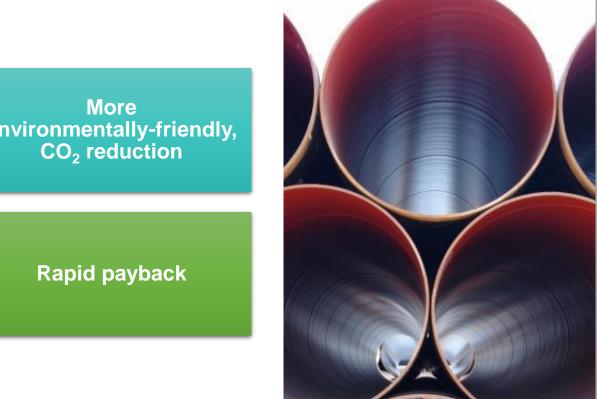

Pipeclad® Flowliner Internal Flow Efficiency Coatings for Natural Gas Transmission: Differentiating Value and Safety

Dr. Jeffrey D. Rogozinski Global Product Director

Agenda

- Why use flow efficiency coatings
- Review of data justifying value proposition •
 - CAPEX
 - \circ OPEX
 - Safety
- Pipeclad[®] Flowliner •
 - Appendix:
 - Track record
 - ✓ Select Projects
 - Testimonials

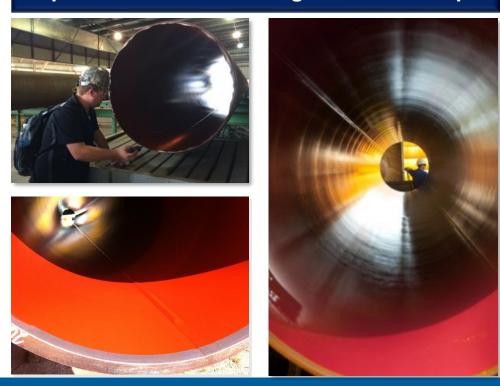

Why Use Flow Efficiency Coatings?

Smoothing the Surface Roughness	Increased throughput
Optimized Pre-Commissioning	Optimal pigging / drying
Lower OPEX Costs	Lower compressor station energy costs
Lower CAPEX Costs	Reduced number of compressor stations Optimized pipeline diameter
Safety	Maintain safe levels of odorant Reduces pickling requirements

Why Use Flow Efficiency Coatings?

SHERWIN **WILLIAMS**

Corrosion protection in storage


environmentally-friendly,

Sealed surface: product purity, less compressor fouling

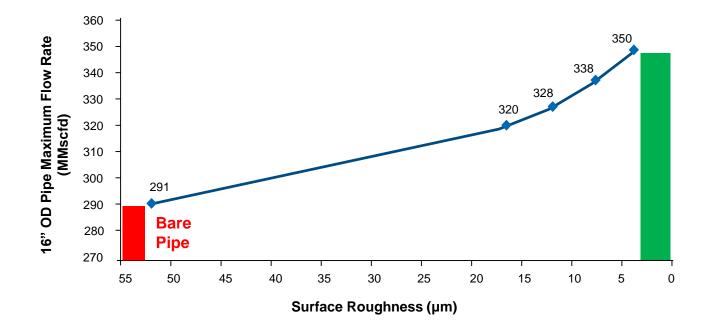
Smooth and Glossy Coating Finish

SHERWIN WILLIAMS.

Pipeclad Flowliner Coating on Inside of Pipe

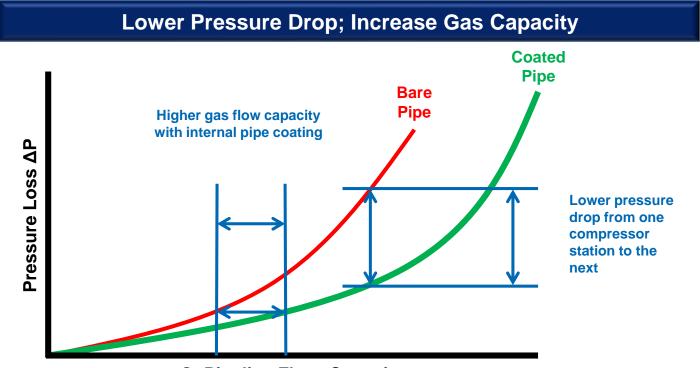
Smoothness Capability for Coated Pipe

Note: Product smoothness is dependent upon application conditions.


SHERWIN

WILLIAMS

Coated Pipe Maximizes Flow Rate



Flowliner Improves Throughput by Making Surfaces Smoother

Source: Development of a New Solvent-Free Flow Efficiency Coating for Natural Gas Pipelines, Rio Pipeline 2005

Benefits of Coating Gas Pipeline Interior

Q, Pipeline Flow, Capacity

Supporting Studies

Source	Date	Summary
Oil and Gas Journal	May 1994	NOVA corp, detailed economic justification for large diameter pipe, lower roughness better
Rio Pipeline Conference	October 2005	CAPEX/OPEX savings, smoother is better, solvent free is best
World Pipelines	February 2007	Reduction in MIC, 15% cost savings, storage and installation corrosion mitigation
World Pipelines	April 2007	Optimizing commissioning, drying time, pigging, corrosion, improved flow pattern
World Pipelines	April 2008	Storage benefits, energy costs, lower CO ₂ , product purity, rapid payback, reduced valve maintenance
World Pipelines	November 2010	Increased flow, increased throughput, lower storage corrosion, lower pumping costs, faster commissioning
World Pipelines	September 2016	Enhanced flow, corrosion protection in storage and pre-commissioning, reduced valve maintenance, lower energy costs, improved roughness
AMI Pipeline Coatings	February 2019	Reduced CAPEX & OPEX, lower CO ₂ , excellent quantitative analysis

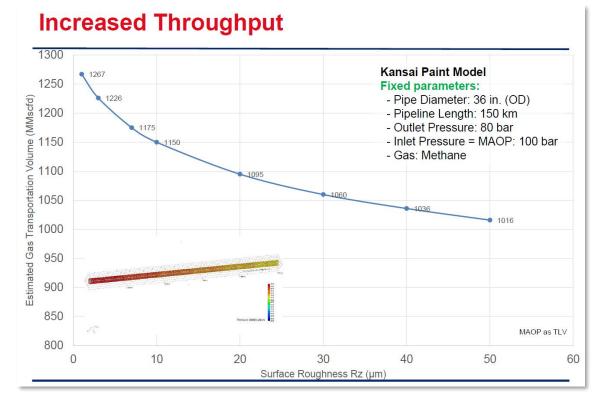
Supporting Studies – Pressure Loss

Pressure Loss Model:

 Darcy-Weisbach and Colebrook-White equations for transportation of methane gas

Key Assumptions:

- Linear pipeline, excluding effects of bends, welds, elevation or gas compressibility
- o 2 compressors, 150 km apart
- o 300 km pipeline


Pressure Drop Summary

Rz (microns)	Type of Surface	Pipe Diameter (in.)	Flow Rate (MMscfd)	Pipeline Length (km)	Inlet Pressure (bar)	Outlet Pressure (bar)	Pressure Drop (bar)
50	Blasted Steel	36	1,060	300	100	52.3	47.7
10	Low Solids FEC	36	1,060	300	100	64.7	35.3
7	High Solids FEC	36	1,060	300	100	66.4	33.6
3	Ultra-High Solids FEC	36	1,060	300	100	69.2	30.8
1	AlesEpomir PTG Series	36	1,060	300	100	71.0	29.0
							_
							uced ire loss

Pipeline flow performance: State-of-the-art simulation modelling C.J.R. Thomas / AMI Pipeline Coatins 2019, Austria, Vienna, 12-14 February 2019

Supporting Studies – Increased throughput

Sherwin Williams.

Pipeline flow performance: State-of-the-art simulation modelling C.J.R. Thomas / AMI Pipeline Coatins 2019, Austria, Vienna, 12-14 February 2019

Supporting Studies – CAPEX & OPEX: Energy Savings

% Energy Saving

0.0

42.6

48.2

57.8

64.3

• 300 km pipeline

- 2 compressors to 1
- Energy savings

2 compressors vs. 1 compressor

Pipeline flow performance: State-of-the-art simulation modelling C.J.R. Thomas / AMI Pipeline Coatings 2019, Austria, Vienna, 12-14 February 2019

Summary					CAPE	EX & 0	OPEX	Savin	gs
50	unnar y					_/			
Rz (µm)	Type of Surface	Pipe Diameter (in.)	Flow Rate (MMscfd)	Pressure at Point B Inlet (bar)	Pressure at Point B Outlet (bar)	Required Pressure Increase (bar)	Comp. Power (kW)	% Power Required	% En Sav
50	Blasted Steel	36	1,060	2	x Compres	sors	17,137	100.0	0.
10	Low Solids FEC	36	1,060	83.0	97.4	14.4	9,829	57.4	42
7	High Solids FEC	36	1,060	83.7	96.8	13.1	8,881	51.8	48

85.0

85.9

957

94.9

107

9.0

7.226

6.111

42.2

35.7

Pipe Diameter: 36 in. (OD) Gas: Methane Flow Rate: 1,060 MMscfd Inlet Pressure: 100 bar (Point A) Pipeline Length: 300 km Compressor Station: 150 km point (Point B) Delivery Pressure: 80 bar (Point C) MAOP (Max Allowable): 100 bar

Ultra-High

Solids FEC AlesEpomir

PTG Series

36

36

1.060

1.060

3

© 2020	The S	Sherwin-Williams	Company
--------	-------	------------------	---------

Supporting Studies – OPEX: Compressor Efficiency Improvements

OPEX and "Green efficiency"

Compressor Station Efficiency Statistics

- 300 km pipeline
- Cost savings based on gas cost
- Emission reduction

Rz (µm)	Type of Surface	Natural Gas Consumption (MMscfd)	Natural Gas Consumption (MMscf/year)	USA	latural Gas Co: (USD/year) EU	st Japan	Natural Gas Consumption (MT/year)	CO ₂ Emissions (MT/year)
50	Blasted Steel	4.70	1,714	5,141,614	12,854,035	18,852,58	39,784	88,321
10	Low Solids FEC	2.69	983	2,948,995	7,372,487	10,812,98	22,818	50,657
7	High Solids FEC	2.43	888	2,664,566	6,661,416	9,770,077	20,618	45,771
3	Ultra-High Solids FEC	1.98	723	2,168,017	5,420,042	7,949,395	16,775	37,241
1	AlesEpomir PTG Series	1.67	611	1,833,483	4,583,708	6,722,772	14,187	31,495

Pipeline flow performance: State-of-the-art simulation modelling C.J.R. Thomas / AMI Pipeline Coatings 2019, Austria, Vienna, 12-14 February 2019

Pipe Diameter: 36 in. (OD) Gas: Methane Flow Rate: 1,060 MMscfd Inlet Pressure: 100 bar (Point A) Pipeline Length: 300 km Compressor Station: 150 km point (Point B) Delivery Pressure: 80 bar (Point C) MAOP (Max Allowable): 100 bar

Supporting Studies – SHERWIN OPEX: # of Compressors Constant, kW & CO₂ Savings^{WILLIAMS.}

OPEX and Environmental Impact

Summary

- 3,000 km pipeline
- # compressors constant
- Energy savings
- CO₂ reduction

Rz (µm)	Type of Surface	Number of Compressor Stations		Natural Gas Consumption (MMscf/year)		atural Gas Co (USD/year) EU	ost Japan	CAPEX Reduction (%)	OPEX Reduction (%)	CO ₂ Emissions (MT/year)
50	Blasted Steel	22	300,928	30,096	90,287,428	225,718,570	331,053,902	0.0	0.0	1,550,927
10	Low Solids FEC	22	247,289	24,731	74,194,119	185,485,297	272,045,102	0.0	17.8	1,274,481
7	High Solids FEC	22	239,027	23,905	71,715,271	179,288,177	262,955,993	0.0	20.6	1,231,901
3	Ultra-High Solids FEC	22	223,976	22,400	67,199,519	167,998,798	246,398,237	0.0	25.6	1,154,331
1	AlesEpomir PTG Series	22	213,571	21,359	64,077,707	160,194,268	234,951,593	0.0	29.0	1,100,705
	PTG Series						20 1,00 1,000		2010	

Fuel: Natural Gas

Fuel cost: Natural gas cost is assumed to be USD 3.00/million BTU in USA, USD 7.5/million BTU in EU, USD 11.0/million BTU in Japan

Source: https://pps-net.org/statistics/gas (2015)

Pipeline flow performance: State-of-the-art simulation modelling C.J.R. Thomas / AMI Pipeline Coatings 2019, Austria, Vienna, 12-14 February 2019

Pipe Diameter: 36 in. (OD) Gas: Methane Flow Rate: 1,060 MMscfd Pipeline Length: 3,000 km

Pressure at compressor suction side: 80 bar Pressure at compressor discharge side: 100 bar Max distance per compressor: 138 km MAOP (Max Allowable): 100 bar

SHERWIN WILLIAMS.

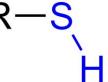
What is the odor of natural gas?

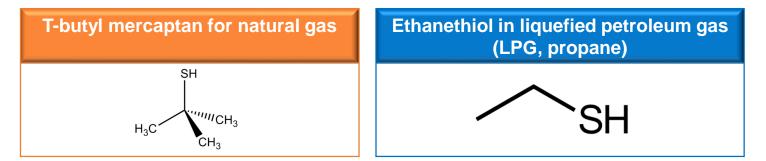
NO ODOR

- The New London School explosion occurred on March 18, 1937, when a natural gas leak caused an explosion, destroying the London School of New London, Texas.
- The disaster killed more than **295 students and teachers**.
- School had 72 gas fired boilers.

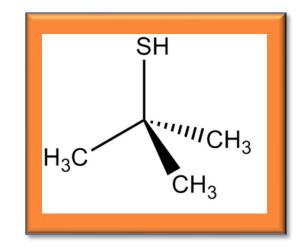
New London, Texas 1937

- School board canceled their natural gas contract and had plumbers install a tap into Parade Gasoline company's residual gas line to save money; a common practice as gas was a waste product and flared off.
- Odorless gas built up and an electric sander was thought to be ignition source.
- Within weeks of accident, Texas laws passed to add odorants to natural gas and practice was widely accepted.




Safety – What are the Odorants in Natural Gas?

Sherwin Williams.


Generally thiols (sulfur analogs of alcohols)

- Often called mercaptans Latin for mercurium captan "capturing mercury."
- Smell like rotten eggs, skunk or garlic (e.g. skunky beer exposed to UV light "Heineken")
- Can smell at **part per billion**

- Metal ion complexation with thiolates
- With metal ions, thiolates behave as ligands to form transition metal thiolate complexes
- The pipe itself can "absorb" the odorant
- This is especially problematic in smaller diameter, longer pipes such as **distribution lines**
- Safety issue if the gas has no odor when delivered to customer.

Atlanta Gas and Light, Southern Company

What is the remedy right now?

Pickle the lines with mercaptan (saturation)

What is a better option?

2017:

- Studied pickling of lines
- Need to pickle lines at commissioning

Tested:

- 50,000 ft of 8-inch pipe
- Pickling cost = \$75,000 not counting 3 weeks downtime
- Coating cost = \$40,000 up front, not to mention not having to pickle every 18-36 months
- No odorant loss

Currently:

 Coating all of their pipe with Pipeclad[®] Flowliner

SHERWIN

WILLIAMS.

Pipeclad Flowliner 930R Family

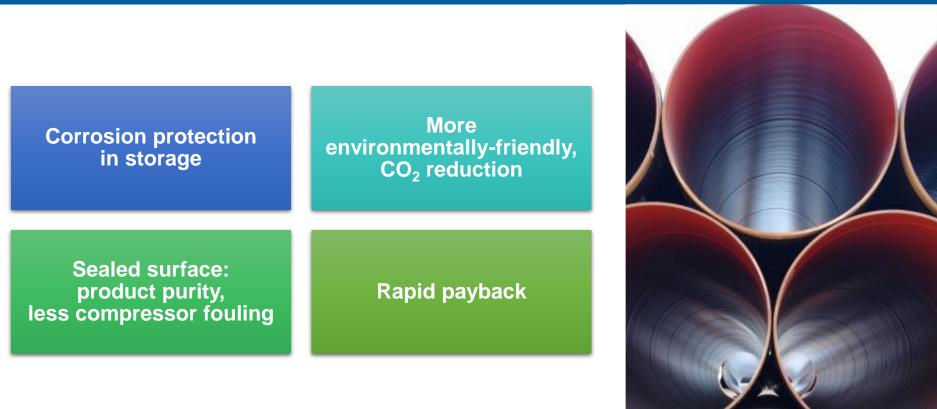
Pipeclad Flowliner 930R HS Ultrasmooth

- 82% volume solids (HAPS free available)
- 4:1 ratio

Pipeclad Flowliner 930R SF

- 100% volume solids
- 3:1 ratio

Å	Protective & Marine			LOWLINER
Sherwin Williams.	Coatings			pipeclad" &
Revised: Januar	/ 11, 2019 PRO	DUCT IN	FORMATION	
Pr	ODUCT DESCRIPTION		PRODUCT CHARA	CTERISTICS (CONTINUED)
smooth coating des transmission pipelin	LINER 930R HS ULTRA-SMOO igned to coat the interior of natu- tes. It significantly improves flo n pipelines and decreases line r PI RP5L2 and designed to meet	ural gas w efficiency	Operating Temperature Range: Reducer:	212'F (101°C) up to occasional spikes of 250'F (121°C) in dry service conditions, no known minimum available. Not required. If needed, do not reduce more than 10% with Xylene
	DUCT CHARACTERISTIC	s	Clean Up:	without consulting a Sherwin- Williams representative. Equipment should be cleaned thor-
Product Number an			Ciedin Op.	oughly, and lines and tips flushed with a 50:50 blend of Xylene and MEK.
Volume Solids:	Part B: CEC0259, Ligt 82 ± 1%, mixed	IL YEIIOW	SURFACE	PREPARATION
Weight Solids: Stormer Viscosity	88 ± 3%, mixed (KU): Part A: 70-100 Part B: 65-85		Remove all surface conta Abrasive blasting to specifie quirements (Sa 2 ½). Recon application is 65-120°F (18-4	mination before abrasive blasting d cleanliness and surface profile re- nmended surface temperature during 19°C).
Density:		./gallon		Instructions
Pourthness achie	Part A: 12.33 ± 0.2.lbs (1.48 ± 0.024) Part B: 8.11 ± 0.2 lbs. (0.97 ± 0.024) Mixed: 11.5 ± 0.2 lbs. (1.38 ± 0.024) ved R: 1.3 micron (measured on		Stir individual components th ing. When using plural comp is recommended. If not using ment, mix components thord homogenous blend prior to a	oroughly for 3 minutes prior to combin- onent application, in-line static mixing g plural component application equip- ughly in the correct ratio to achieve a application.
60º Gloss:	99. measured when ma	de freshlv		ION EQUIPMENT
Hard Dry Time:	(varies from 90-99 dependi 6 hours at 77*F (25*C).	-	Method: Multiple gun airle	
Mix Ratio:	4A:1B by volume ; 6A:1		orifice depending on pipe s	
VOC:	160 g/L ; 1.33 lb/gal, mi	xed	Temperature: Paint tempe around 25'C / 77'F	ratures should be maintained at
Recomm	ended Spreading Rate per Minimum	coat: Maximum	Delivery pressure: 2,500-	4,000 psi/172-275 bar.
Wet mils (micror Dry mils (micron	s) 2.2 (56) s) 1.9 (48)	2.6 (65) 2.2 (56)	Final Film Thickness: Typ microns or 2.0-4.0 mils or applicator, and operator.	ical specified thickness is 50 to 100 as agreed upon by manufacturer
Coverage sq ft	mils of thickness for different length	602 (15) of pipe (miles): 50 100	Humidity: Do not exceed plication. Do not operate w dew point.	85% relative humidity during ap- hen substrate is within 3°C (5°F) o
Diameter: mile: 24 " 48 gal	miles: miles: miles: mi	les: miles:	Temperature: Operating at not recommended without	t temperatures below 10°C (50°F) is forced air drying.
Pot Life:				CLAIMER
(minutes) 0 25	Viscosity Time (KU) (minutes) 86.0 0 87.7 11	Viscosity (KU) 68.3 68.3*		tions set forth in this Product Data Sheet are on behalf of The Sherwin-Williams Company isons set forth herein are subject to change and e time of publication. Consult your Sherwin he most recent Product Data Information and
45 60	91.4 NA 114.5 NA	NA NA	SAFETY Refer to the MSDS sheet before up	PRECAUTIONS
*Temperature rapidly ri Shelf Life:		I, from date	Published technical data and instr Contact your Sherwin-Williams rep	uctions are subject to change without notice presentative for additional technical data and
	12 months unopened of batch/lot certificati indoors at 40°F (4.5° (41°C).	on. Store C) to 105*F	W	ARRANTY
Pot Life:	(41°C). ~60 minutes @ 70°1 ~10 minutes @ 11 temperature will rapid! minutes	F (21°C) 0°F (43°C) - y rise after 10	The Sherwin-Williams Company wa defects in accord with applicable (Lability for products proven defect rective product or the retund of the as determined by Sherwin-Williams OF ANY KINO IS MADE BY SHER STATUTORY, BY OPERATION O	mants our products to be free of manufacturing Snerwin-Williams quality control procedures with any, is similar to regulate the de- nixed of the state of the de- nixed of the state of the state of the de- nixed of the state of the state of the state with will large state of the state of the state with will any state of the state of the state with any state of the sta


Why Use Flow Efficiency Coatings?

Smoothing the Surface Roughness	Increased throughput
Optimized Pre-Commissioning	Optimal pigging / drying
Lower OPEX Costs	Lower compressor station energy costs
Lower CAPEX Costs	Reduced number of compressor stations Optimized pipeline diameter
Safety	Maintain safe levels of odorant Reduces pickling requirements

Why Use Flow Efficiency Coatings?

Sherwin Williams.

Appendix

Conformity to:

- Standards
- Specifications

At work in the field:

- Select projects
- Track record
- Testimonials
- Recommendations

Ξ

Conforms to API RP 5L2 Standard

Tests	API RP 5L2 Acceptance Criteria	Test Method	Test Results	Status
Salt Spray	No blistering and ≤0.125 inch of coating removed in any direction from scribe with pull by clear plastic tape	Appendix B API RP 5L2	No blistering and no coating removed in any direction from scribe with pull by clear plastic tape (2.2 mils)	Pass
Water Immersion	No blistering over 0.25 inch from edges	100% immersion in saturated CaCO ₃ / distilled water solution, 21 days 77±2°F	No visible blistering (2.1 mils)	Pass
Methanol and Water Mixture (1:1 by Volume)	No blistering over 0.25 inch from edges	100% immersion in mixture, 5 days 77±2°F	No visible blistering (1.9 mils)	Pass
Stripping	Coating shall flake off and produce powdery particles when rolled	Appendix C API RP 5L2	Coating flaked and powdered when rolled (2.0 mils)	Pass
Bend	No visual flaking, adhesion loss, or cracking at ≥0.5 inch diameter	ASTM D 522	No visible flaking, adhesion loss, or cracking at ≥0.5 inch diameter (2.1 mils)	Pass
Adhesion	No material lifting other than cuttings	Appendix D API RP 5L2	No material lifted other than cuttings (2.0 mils)	Pass
Hardness	≥94 Buchholz @ 77±2°F	DIN 53 153	Average Buchholzhardness of 106 (2.0 mils)	Pass
Gas Blistering	No blistering	1200±100psi 24hrs., 77±10°F	No visible blistering (2.1 mils)	Pass
Abrasion	≥23 coefficient of abrasion	ASTM D 968 Method A	223 coefficient of abrasion (2.0 mils)	Pass
Hydraulic Blistering	No blistering	2400±500psi 24hrs., 77±10°F	No visible blistering (2.1 mils)	Pass

Conforms to ISO 15741 & EN 10301 Standards

Tests	ISO 15741/EN 10301 Acceptance Criteria	Test Method	Test Results	Pass/Fail
Non-volatile Matter by Mass	Meets manufacturer specifications	ISO 3251	Part A = 83.2% Part B = 68.1% Mixed = 86.5%	Pass
Non-volatile Matter by Volume (ISO 15471 Only)	Meets manufacturer specifications	ISO 3233	66.20%	Pass
Viscosity	Meets manufacturer specifications	ISO 2431	654 cP (75KU)	Pass
Density	Meets manufacturer specifications	ISO 2811	Part A = 1.67 g/mL Part B = 0.99 g/mL	Pass
Ash	Meets manufacturer specifications	ISO 15741 Annex A	Part A = 56.4%	Pass
Dry Film Thickness	60 μm to 100 μm	ISO 15741 Annex B	Average = 3.6 mils (90.2 µm)	Pass
Adhesion	ISO ratings of ≤1	ISO 2409	ISO ratings of #0 (no coating removed)	Pass
Buchholz Hardness	Hardness value of 94 or greater	ISO 2815	Buchholz hardness = 134	Pass
Resistance to Natural Salt Spray	Samples free from deterioration, blisters, cracking or staining	ISO 7253	No blistering, cracking or staining	Pass
Resistance to Artificial Aging	Maximum crack length after bending of 13mm from small end of mandrel	ISO 15741/EN 10301	No cracks or disbondment	Pass

Conforms to ISO 15741 & EN 10301 Standards

Tests	ISO 15741/EN 10301 Acceptance Criteria	Test Method	Test Results	Pass/Fail
Bend Test	Maximum crack length of 13mm from small end of mandrel	ISO 6860	No cracks or disbondment	Pass
Resistance to Gas Pressure Variations	No blistering, ISO adhesion, ISO adhesion ratings of ≤1	ISO 15741/EN 10301 Annex C	No blistering ISO adhesion ratings of #0	Pass
Resistance to Water Immersion	No blistering or softening	ISO 2812 - 2	No blistering or softening	Pass
Resistance to Chemicals – Cyclohexane	No blistering or softening, ISO adhesion ratings of ≤1	ISO 2812-1	No blistering or softening	Pass
Resistance to Chemicals – Diethylene Glycol in Water	No blistering or softening, ISO adhesion ratings of <1	ISO 2812-1	No blistering, ISO adhesion ratings of #0	Pass
Resistance to Chemicals – Hexane	No blistering or softening, ISO adhesion ratings of ≤1	ISO 2812-1	No blistering or softening, ISO adhesion ratings of #0	Pass
Resistance to Chemicals – Methanol	No blistering or softening, ISO adhesion ratings of ≤1	ISO 2812-1	No blistering or softening, ISO adhesion ratings of #0	Pass
Resistance to Chemicals – Toluene	No blistering or softening, ISO adhesion ratings of ≤1	ISO 2812-1	No blistering or softening, ISO adhesion ratings of #0	Pass
Resistance to Chemicals – Lubricating Oil	No blistering or softening, ISO adhesion ratings of ≤1	ISO 2812-1	No blistering or softening, ISO adhesion ratings of #0	Pass
Resistance to Hydraulic Blistering	No blistering, ISO adhesion, ISO adhesion ratings of ≤1	ISO 15741 Annex D	No blistering or softening, ISO adhesion ratings of #0	Pass

Pipeclad Flowliner Meets End User Specifications

At work in the field...

Ruby Pipeline

Scope: Largest 2010 pipeline in U.S. **Pipe Coated:** 675 miles (~1,086 km) **Diameter:** 42-inch pipe

Coatings:

- Pipeclad[®] 2000 FBE
- Pipeclad[®] 2040 ARO
- Pipeclad[®] Flowliner Liquid

Challenges:

- Pipeline exposed to difficult elements (rock/rivers/etc.)
- Used low-VOC Flowliner to meet environmental constraints

Results:

- Delivered products 100% on time with no quality problems for 14 months at 5 different applicators
- Improved plant application of FBE by applying internal coating before external coating

Questar Pipeline

Scope: 2010 pipeline in U.S. Pipe Coated: 45 miles (~73 km) Diameter: 36-inch pipe

Coatings: • Pipeclad[®] 2000 FBE

Pipeclad[®] Flowliner Liquid

Challenges:

• Extreme flexibility needed for undulating terrain

Results:

 Met or exceeded all customer expectations

Green River, Wyoming construction site with Pipeclad 2000 & Flowliner

TransCanada Project

Scope: Multi-year pipeline installation in the U.S. Pipe Coated: 477 miles (768 km) Diameter: 30- to 48-inch pipe

Coatings:

- Pipeclad[®] 2000 FBE
- Pipeclad[®] Flowliner Liquid

Challenges:

Cold weather application
and installation

Results:

 Met or exceeded all customer expectations

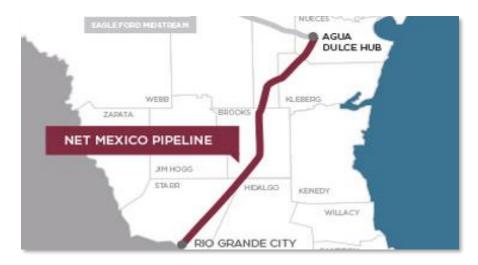
Coated pipe unloaded at Parkway

NET Mexico Pipeline

Scope: Major 2014 pipeline in the U.S. Pipe Coated: 124 miles (200 km) Diameter: 42- and 48-inch pipe

Coatings:

Pipeclad[®] Flowliner 930R UHS


Challenges:

- Rz value needed to be 2 microns or less
- Needed easy-to-apply product with technical support

Results:

• Rz value, product performance and technical support exceeded customer expectations

Williams Project

Scope: 2013-2014 pipeline in the U.S.) Pipe Coated: 255 miles (362 km) Diameter: 24-, 26- and 42-inch pipe

Coatings:

- Pipeclad[®] 2000 FBE
- Pipeclad[®] 2040 ARO
- Pipeclad[®] Flowliner Liquid

Challenges:

- Constitution Pipeline and Virginia Southside Expansion required strict coating deadlines
- Portion of Rockaway Delivery Lateral pipe lay consisted of HDD onshore drill to run to offshore exit point

Results:

- Delivered products 100% on time with no quality problems
- Improved ease of application by having technical support present for different applicator project start-ups
- Met or exceeded all customer expectations

Information:

 Project includes Virginia Southside Expansion, Constitution Pipeline, Rockaway Lateral Project and Liedy Southeast Expansion

A proven track record...

Valspar Product	Project Name	Location	Pipe Length	Diameter	Year
Pipeclad Flowliner	UGI Utilities	North America	11 miles	24"	2017
Pipeclad Flowliner	Atlantic Coast P/L	North America	550 miles	36"	2016
Pipeclad Flowliner	Kinder Morgan (Triad Expansion)	North America	7 miles	36"	2016
Pipeclad Flowliner	Kinder Morgan (Susquehanna West)	North America	8 miles	36"	2016
Pipeclad Flowliner	Spectra Energy	North America	255 miles	36"	2016
Pipeclad Flowliner	CFE/Enbridge	India	168 miles	36"	2016
Pipeclad Flowliner	Spectra Energy	North America	465 miles	36"	2016
Pipeclad Flowliner	NextEra	North America	126 miles	30" & 36"	2016
Pipeclad Flowliner	Dominion	North America	30 miles	20" & 30"	2016
Pipeclad Flowliner	Energy Transfer	North America	800 miles	24", 30", 36" & 42"	2015
Pipeclad Flowliner	Williams	North America	8 miles	36"	2015

Valspar Product	Project Name	Location	Pipe Length	Diameter	Year
Pipeclad Flowliner	Spectra Energy	North America	73 miles	30"	2014
Pipeclad Flowliner	Boardwalk	North America	74 miles	24-30"	2014
Pipeclad Flowliner	Williams	North America	100 miles	24"	2014
Pipeclad Flowliner	NET Midstream	North America	.5 miles	48"	2013
Pipeclad Flowliner	NET Midstream	North America	124 miles	42"	2013
Pipeclad Flowliner	Williams	North America	5 miles	26"	2013
Pipeclad Flowliner	Williams	North America	120 miles	24"	2013
Pipeclad Flowliner	Shell	North America	90 miles	16"	2012
Pipeclad Flowliner	GAIL	India	100 miles	20"	2011
Pipeclad Flowliner	Bison (TCPL)	North America	303 miles	30"	2010
Pipeclad Flowliner	Fayetteville Express	North America	185 miles	42"	2010

Valspar Product	Project Name	Location	Pipe Length	Diameter	Year
Pipeclad Flowliner	Ruby	North America	675 miles	42"	2010
Pipeclad Flowliner	Haynesville Extension	North America	249 miles	30-36"	2009
Pipeclad Flowliner	Boardwalk	North America	100 miles	36"	2008
Pipeclad Flowliner	Cheniere	North America	241 miles	42"	2008
Pipeclad Flowliner	Trinidad (Amaco)	Trinidad	105 miles	24"	2005
Pipeclad Flowliner	Alliance Pipeline	North America	2,300 miles	36"	2000
Pipeclad Flowliner	Kinder Morgan	North America	221 miles	36"	1998
Pipeclad Flowliner	Sempra	North America	38 miles	36"	1996
Pipeclad Flowliner	Anadarko	North America	58 miles	20"	1994
Pipeclad Flowliner	Gulf South	North America	130 miles	42"	1993
Pipeclad Flowliner	A to C (ARKLA)	North America	275 miles	36"	1992

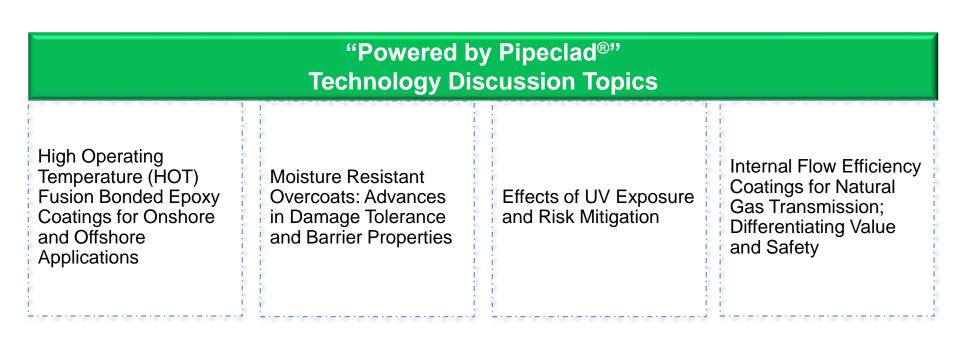
Valspar Product	Project Name	Location	Pipe Length	Diameter	Year
Pipeclad Flowliner	Northern Natural	North America	50 miles	30"	1986
Pipeclad Flowliner	Texas Gas	North America	192 miles	42"	1985
Pipeclad Flowliner	Northern Borders	North America	100 miles	30"	1982
Pipeclad Flowliner	Northwest Pipeline	North America	250 miles	36-42"	1981
Pipeclad Flowliner	Trailblazer	North America	420 miles	42"	1981

Testimonial

3,719-kilometer natural gas pipeline completed in 2000 connecting Canada to U.S.

"As one of the newest pipeline systems, Alliance is also one of the most efficient. Our internally-coated pipeline and high-efficiency combustion turbines result in significantly lower greenhouse gas emissions than a conventional pipeline system."

Testimonial



"NET Mexico chose Valspar Flowliner 930R UHS for internal coating of the 42" OD pipe because it had proven to produce a very low surface roughness." —Jordan Hunter, Pipeline Construction Manager

200-kilometer natural gas pipeline completed in December 2014 to transport gas from 9 interconnects in Texas, U.S.

End User	Contact Name	Title	Phone	E-mail
Consultant (former TCPL/Williams)	Matt Dabiri	Coating Consultant	+1 (713) 305-6620	matt.dabiri@gmail.com
Enbridge/Spectra Energy	Steve Rapp	Manager - Metallurgical Services	+1 (713) 627-6394	scrapp@spectraenergy.com
EQT	Nickey Zafris	Engineer II	+1 (412) 395-2118	nzafris@eqt.com
Kinder Morgan	Drew Hevle	Manager - Corrosion Engineering	+1 (713) 420-6290	drew_hevle@kindermorgan.com
Shell	Virgil Wallace	Corrosion Specialist	+1 (713) 241-1565	virgil.wallace@shell.com
TransCanada	Aissa Van Der Veen	Senior Coatings Engineer	+1 (403) 920-5496	aissa_van_der_veen@transcanada.com

Sherwin

WILLIAMS.

刀