

Sinclair Energy Partners[©]

Strategic domain expertise you can count on

Corrosion Inhibitor Modelling and Optimisation

Presented at the Institute of Corrosion

25th May 2021

Chetan Laddha Juan Dominguez Olivo

© Sinclair Energy Partners 2021

Corrosion Inhibitor Technology Positioning

Status Quo

Current practices:

Inhibitor chemistry is a black-box provided by the chemical suppliers

Challenges:

- Gap in the ability to correlate inhibitor (CI) efficiency/performance with changing process conditions. Leads to conservative practices for corrosion inhibitor evaluation
- State-of-the art simulation and techniques cannot be applied to simulate CI performance
 - Unknown molecular structure of the inhibitor
 - Simulation assumes a "atomically flat" metal surface

Business impact:

May 21

Conservative dosage rates

es **S** High OPEX

Aspired Vision

- Mechanistic model for deriving the performance and efficiency of corrosion inhibitors
- Optimised inhibitor dosage rates
- Real-time correlation between dosage and operating envelope
- Inhibitor performance model based on electrochemical response from the presence of the inhibitor on the metal surface (doesn't require information on inhibitor chemical composition)

2

Corrosion Inhibitor Technology Positioning

Widely acknowledged that the corrosion Inhibitor (CI) efficiency does vary with changing operating conditions. However, there is a gap in the ability to accurately model or correlate the CI performance with changing parameters.

<u>Note</u>: Some general rules of thumb exist, such as the inverse correlation between corrosion rates and temperature, however the rest of the correlations are known to be highly **non-linear** and **fractal** in nature. These regimes drive the need for mechanistic modelling techniques.

Example of Corrosion Inhibition Assessment with the Current Inhibition Understanding: Effect of Velocity

Effect of Rotational Speed (1/4)

Effect of Rotational Speed (2/4)

© Sinclair Energy Partners 2021

Effect of Rotational Speed (3/4)

Effect of Rotational Speed (4/4)

Sinclair May 21

© Sinclair Energy Partners 2021

Rotational Speed - Key Observations

Key Observations:

- The efficiency seems to change depending on the effect of velocity / rotational speed.
- Kapusta, B. Pots, and Connell¹ proposed more than 2 decades ago that a corrosion inhibitor would be evaluated by their final corrosion rates rather than efficiency coefficient.
- The empirical observation from Kapusta arises a question: why does a corrosion inhibitor have such a behavior? This behavior will be the same if we change pH rather than velocity? What about temperature?
 Fortunately, there is a better way to evaluate the performance of a corrosion inhibitor and answer those questions: evaluate the corrosion mechanisms affected by the inhibitor².

 ¹ Kapusta, S. D., Pots, B. F., & Connell, R. A. (1999, January). Corrosion management of wet gas pipelines. In *CORROSION* 99. NACE International.
 ² Dominguez Olivo, J.M., Young, D., Brown, B., & Nesic, S. (2020, August). An Improved Methodology to Assess the Performance of Organic Corrosion Inhibitors. In *CORROSION* 2020. NACE International.

Example of Corrosion Inhibition Assessment with an Improved Methodology: Effect of Velocity and Concentration

Inhibitor Model Based on the Concept of Blockage

Underlying Assumption: Diminution of Active Surface Area

Charge transfer and limiting currents are diminished in a blocked/ partially blocked electrode^{1,2}

May 21

- 1. Amatore, C., Savéant, J. M. & Tessier, D. Charge Transfer at Patially Blocked Surfaces. A Model for the Case of Microscopic Active and Inactive Sites. J. Electroanal. Chem. 147, 39–51 (1983).
- 2. Reller, H., Kirowa-Eisner, E. & Gileadi, E. Ensembles of microelectrodes. J. Electroanal. Chem. 138, 65–77 (1982).

Kinetics of Inhibited Corrosion (Unchanged Limiting Current)

Model Equations for Inhibited Kinetics¹

¹Dominguez Olivo, J.M., Brown, B., Young, D., & Nesic, S. (2019, May). Electrochemical Model of CO₂ Corrosion in the Presence of Quaternary Ammonium Corrosion Inhibitor Model Compounds. In *CORROSION 2019*. NACE International.

Capabilities of the Model

Modelling Effect of Rotational Speed

Corrosion Inhibitor Operating Window Extrapolation: Changing Flow

Modelling Effect of pH

pH 3.5 to 5.5, 0.96 bar CO₂, 30°C, RCE 1000 rpm

Capabilities of the Model

pH4, 0.96 bar CO₂, 25 - 45[°]C, RCE 1000 rpm

User Interface Overview

Ξ

May 21

= 💿 Inhibitor Optimiser	- 8 ×	≡ (m) Inhibitor Optimiser	- 🗆 ×
Operating Parameters Input Parameters for Corrosion Inhibition Simulation General Input Parameters Corrosion Inhibitor Type	Global Conditions	Water Chemistry Enter the Conditions to be Calculated Input Upload Water Chemistry Browse	Output
Functional Group Nitrogen Type of Injection Continuous	Pressure Bar _	(e.g., XRF) O Calculate Water Chemistry Gas Composition	Ionic Strength Mol/L Alkalinity Mol/L
Inhibitor Information Corrosion Inhibitor Type Organic v Functional Group Nitrogen v Type of Injection Continuous v Concentration Range ppm Reported Efficiency % K _{AD} = E _A =	On-site Sampling Data	H_2S Gas H_2S Gas $oldsymbol{O}$ Calculate pH $oldsymbol{O}$ Calculate Alkalinity Mg^{2+} Fe^{2+} Na^+ Cl^-	Working pH 1.00E-02 1.00E-04 1.00E-04 1.00E-08 1.00E-10 1.00E-12 1.00E-12 1.00E-14 3 4 5 6 7 pH
(C)2021 Sindair Energy Partners LTD. All rights Reserved		(C)2021 Sindair Energy Partners LTD. All rights Reserved	
Sinclair)		17	© Sinclair Enormy Partners 2021

(C)2021 Sinclair Energy Partners LTD. All rights Reserved

Current Deployment and Future Work

Thank you

Sinclair Energy Partners Ltd. 9 Queen Elizabeth Way, Woking, GU22 9AG United Kingdom +44 749 076 4492 Registered in England and Wales under Companies Act 2006,

registered number 11697728

Sinclair

