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CI’s: Applications

 

(Source: www/wahchang.com) (Source: www.clevelandart.org)
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Historical Note
116 ABSTRACTS OF CHEMICAL PAPERS. 
On the Influence of certain Liquids in Retarding or Arresting the Action of Acids 
upon Metals. 
By C. MARANGONI and P. STEFANELLI (IL Nuovo Cimento [2],iv, 373-389). 

The evolution of hydrogen from dilute sulphuric acid by the action of 
zinc, is quickly arrested on adding a small quantity of an essential oil, 
such as oil of myrtle, thyme, lavender, turpentine, or cherry-laurel, and 
agitating briskly with a glass rod, but recommences, though less 
strongly, on addition of a certain quantity of alcohol. Fixed oils like-
wise arrest the action completely, but less quickly than essential oils ; 
ether, naphtha, benzene, and nitrobenzene have but little effect, the 
evolution of hydrogen being merely retarded by them while the agita-
tion continues, and recommencing soon after the liquid is left at rest. 

J. Chem. Soc. 25 (1872)
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Definition
A corrosion inhibitor is a substance that, when added in small quantity to a
normally corrosive environment, reduces the corrosion rate by bringing about a
change at or near the metal surface, without significantly changing the
concentration of corrosive species.
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CI Efficiency
Figure of merit for CI performance 

η% =
(U -  I)
U

×100.
•  U: Uninhibited CR
•  I: Inhibited CR

A good inhibitor will have an efficiency of over 95% (i.e. inhibited corrosion rate 
is less than one twentieth of rate without inhibitor.)
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Cl Classification
• 2D/3D film forming

• Organic/Inorganic

•  Anodic/Cathodic/Mixed

•  Oxidising/Non-oxidizing

•  Safe/Dangerous
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Nature of Surface Film

• 3D film 
More typical in aerated near-
neutral solution

•  2D adsorbed film 
More typical in acidic solution
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Acidic Environment

Fe → Fe2+ + 2e- (Anodic Reaction; Oxid.) 
2H+ + 2e- → H2 (Cathodic Reaction; Red.) 
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CI: Acidic Environment
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CI: Practical Selection
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• Essentially Empirical

•  Trial & Error



Current Research Effort
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• Adsorption Thermodynamics

•  Machine Learning

• Interface Characterisation

• Green CI’s
molecular descriptor used to train the ANN model. Calculation of the
HOMO-LUMO gap is computationally cheap and is relatively insensitive
to basis set size. We found that different basis sets (def2SVP, def2TZVP,
and def2QZVP) did not substantially influence the HOMO-LUMO gap
trend in a data set consisting of three dissolution accelerators, three
moderate inhibitors and three effective corrosion inhibitors. However,
larger basis sets increased computational times ∼100-fold (for details
see SI, section II). This analysis suggested that compounds with small
HOMO-LUMO gap are generally better corrosion inhibitors for CP Mg.
The correlation of the energy gaps with the inhibition efficiencies is
quite high for this material in comparison to studies on Al based alloys
where the correlation was essentially zero and the frontier orbital en-
ergies may already account for 50% of variance in the data. However,
complementary features are needed to further improve the R² value of
our model. Hence, we used two additional descriptors to train the ANN
model (see Fig. 2), the number of hydroxyl and carbonyl groups in the
molecules. These were considered important because they are gen-
erating chelating moieties (carboxylates and phenols) that are involved
in binding the compounds to metals. A fourth molecular descriptor that
distinguishes between aromatic and aliphatic molecules was also used
because aliphatic compounds generally have higher HOMO-LUMO gaps
than aromatic molecules for a given level of corrosion inhibition (see
Fig. 1). A three layer feed forward network with one hidden layer was
trained to predict the experimental IE values for CP Mg 220 [6] using
the resilient back propagation (rprop+) algorithm in RStudio [55]. The
source code for the ANN is provided in the supporting information (SI,
section III).

To assess the ability of the ANN model to predict IE for new can-
didate modulators, the dataset was divided in a training (85%, 60
modulators) and test set (15%, 11 modulators). Partitioning of the test

sets was based on random selection. However, random test set selection
from small heterogeneous data sets often creates large differences in the
prediction performance of an ANN model. Consequently, a cross-vali-
dation approach was adopted where the test sets were randomly chosen
six times to minimize selection biases for the model (for details see SI,
section I). Fig. 3 shows the quality of the model prediction of mod-
ulators in the training and test sets. The RMSD values for the predic-
tions of IE for the six cross-validation sets lie between 19% and 34%,
consistent with the experimental errors that were observed.

The complete dataset was subsequently used to train an ANN model
to make an a priori prediction of the performance of seven

Fig. 1. Correlation of calculated (TPSSh/def2SVP) HL gaps with the experimentally measured[6] inhibition efficiencies for CP Mg 220 (left). Inhibition efficiencies
are higher with smaller HOMO-LUMO gaps. Partitioning of the dataset into aromatic and aliphatic compounds revealed that aromatic compounds tend to have lower
HOMO-LUMO gaps than aliphatic compounds while exhibiting equal values for IE (right).

Fig. 2. ANN architecture employed for the prediction of the IE of magnesium dissolution modulators for CP Mg 220. The input layer accepts the four molecular
descriptors (ΔEHL, NOH, NCO, Iarom/aliph), the hidden layer generates the model, and the output layer node provides the calculated IE value for CP Mg 220.

Fig. 3. Correlation of the predicted consensus test set IE with the experimen-
tally derived IE for CP Mg 220. The dashed orange line constitutes perfect
correlation between training and test set. Data points are depicted as light blue
crosses. The grey line represents the linear least squares fit of the predicted and
measured values in the used test set including the fits R² and RMSD values. The
depicted RMSD value represents the mean deviation in absolute percent.
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Research Goal
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Cartoon or Reality?



Our Experimental Toolbox

Corrosion Rate: LPR/PDP + Weight Loss
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XPS: Basics
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• Surface Sensitive

• Elemental/Chemical Composition



XPS: Methodology
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System of Interest: c-steel + OMID

16

OMID

HG-OMID

Imine
1o Amine 3o Amine



C-Steel/1 M HCl + OMID: Performance
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• PDP
• @4 h immersion
• T ~ 298 K

CMC =  0.18 ± 0.03 mM



C-Steel/1 M HCl + OMID: CR/h%
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C
M
C • CR from LPR

• @4 h immersion
• T ~ 298 K

η% =
(U -  I)
U

×100.



XPS: C-Steel/1 M HCl + OMID
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Imine1o Amine 3o Amine



N 1s Profile: Protonation?

20OMID: Double Protonation in 1 M HCl

• Online Software
(Chemicalize, Chemaxon)



N 1s Profile: Interpretation

21Adsorbed OMID: 2x Singly Protonated 
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OMID: Adsorbed State

????????????



Fe 2p, O 1s, Cl 2p Profiles
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Interface Evolution: 1 M HCl + OMID
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Acid Solution: HCl to H2SO4
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Solution
CR 

0 mM [OMID]
(mm y-1)

CR
CMC [OMID]

(mm y-1)

h%
(%)

1 M HCl 3.75 ± 0.07 0.11 ± 0.01 97.1 ± 0.3
0.01 M HCl 1.96 ± 0.12 0.28 ± 0.03 85.7 ± 1.8
1 M H2SO4 52.71 ± 0.80 1.09 ± 0.07 97.9 ± 0.1
0.01 M H2SO4 4.43 ± 0.70 0.20 ± 0.01 95.5 ± 0.8



XPS: HCl vs H2SO4
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Fe 2p, O 1s,  S 2p, Cl 2p Profiles
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H2SO4 ≠ HCl: Why?
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The relationship between the solubility of FeSO4 and the rate of
corrosion can be observed by comparison of Fig. 5 with Fig. 6. De-
spite the differences in the temperatures of the tests conducted for
the construction of Figs. 5 and 6, both show the same trend:

(1) at concentrations up to 70%, an increase in the acid concen-
tration causes a decrease in both the FeSO4 solubility and the
corrosion rate of carbon steel;

(2) at concentrations greater than 70%, an increase in the acid
concentration causes an increase in both the FeSO4 solubility
and the corrosion rate of carbon steel;

(3) at concentrations between 90% and 100%, an increase in acid
concentration again causes a decrease in both the FeSO4 sol-
ubility and the corrosion rate of carbon steel;

(4) at concentrations between 80% and 90%, all curves exhibit a
maximum. However, the concentration at which this maxi-
mum occurs is different, probably because of differences in
temperature and in other test conditions not outlined by
the authors.

From the above discussion, it is clear that, for concentrated sul-
furic acid, dilution should be avoided. If an accidental water intake
occurs in a level high enough to cause an acid dilution, the protec-
tive layer starts to dissolve in the acid, which causes an accelera-
tion of the metal corrosion.

In acid storage tanks, water absorption especially occurs during
loading/unloading operations because of exposure to atmospheric
air, which is usually humid. The stored acid absorbs the water va-
por from the humid atmosphere and becomes more corrosive [19].

Water–vapor absorption can also occur by the protective layer
of FeSO4 (which undergoes hydration) or by the acid entrapped
in the FeSO4 layer, both of which are exposed to atmospheric air
at the empty space of the tank. In the case of acid entrapped in
the FeSO4 layer, all the acid retained by the sulfate layer, may react
with the steel after dilution and may induce a higher corrosion rate
of the tank walls in contact with the empty space [19]. The degree
of corrosion acceleration will depend on the amount of acid re-
tained on the walls of the tank: If it is less than 25 g m!2, an accel-
eration of corrosion is expected because small amounts of

absorbed water are sufficient to dilute the acid. However, for re-
tained acid concentrations greater than 25 g m!2, the amount of
absorbed water must be very large so that the dilution reaches crit-
ical levels.

The acceleration of corrosion caused by water absorption is
greater for 70% H2SO4 than for 98% H2SO4 for two reasons: first,
the amount of water that 98% H2SO4 needs to absorb to become
corrosive is two to three times higher than the amount necessary
for 70% H2SO4 to reach a level of dilution capable of causing strong
acceleration of corrosion; second, and even more important, is that,
at room temperature, the FeSO4 in equilibrium with acid concen-
trations of 90% or greater contains no hydration water, but the
FeSO4 contains one molecule of hydration water when in equilib-
rium with (15–90%) H2SO4. Thus, with more concentrated acids,
part of the absorbed water is primarily intended for incorporation
by FeSO4 in the form of hydration water, and only after that incor-
poration can the acid be diluted to less than 90% and become cor-
rosive [19].

For concentrated acid (>90%) and for normal storage-tank oper-
ating conditions, water absorption is generally not sufficiently high
to cause corrosion acceleration. However, for out-of-service tanks,
especially for those out of service for long periods, severe localized
corrosion may be observed. One example cited by Dean and Grab
[19] is related to an acid storage tank taken out of service for
two months that exhibited a localized corrosion rate as high as
30 mm y!1. This tank was left open to the atmosphere. Total hydra-
tion of the FeSO4 layer and oxidation of ferrous ions to ferric ions
by atmospheric oxygen were observed. Furthermore, water drop-
lets along the horizontal welds were observed. According to the
authors, ferric sulfate solutions corrode carbon steel at rates up
to 35 mm y!1 at room temperature, which explains the previously
discussed high corrosion rate.

From the above discussion, preventive measures against water
intake are not required for normally operated tanks that contain
sulfuric acid with a concentration of 90% or greater. However, vent
dryers are desirable for sulfuric acid tanks out of service for ex-
tended periods.

3.2. Temperature

The corrosion rate increases with an increase in temperature.
This behavior can be observed in Fig. 7. From this figure, for 90%
H2SO4, the corrosion rate is slightly higher than 0.5 mm y!1 at
24 !C, whereas the rate increases approximately 10-fold
(5 mm y!1) when the temperature is increased to 107 !C. For 98%
sulfuric acid, the corrosion rate is approximately 0.13 mm y!1 at
24 !C and almost 5 mm y!1 at 79 !C.

Fig. 6. Corrosion rate of carbon steel as a function of H2SO4 concentration at 20 !C.
Adapted from Ref. [18].

Fig. 7. Corrosion rate of carbon steel tanks at different temperatures and sulfuric
acid concentrations under static conditions. Adapted from Ref. [9] (Fig. B1).

4 Z. Panossian et al. / Corrosion Science 58 (2012) 1–11

Hines et al, Corros. Sci. (1964).



Summary
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Acid dependency:

• Adsorbed OMID 

• Substrate termination

Key information for knowledge-based development of 
next generation corrosion inhibitors



Current Research Effort
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• Adsorption Thermodynamics

•  Machine Learning

• Interface Characterisation

• Green CI’s
molecular descriptor used to train the ANN model. Calculation of the
HOMO-LUMO gap is computationally cheap and is relatively insensitive
to basis set size. We found that different basis sets (def2SVP, def2TZVP,
and def2QZVP) did not substantially influence the HOMO-LUMO gap
trend in a data set consisting of three dissolution accelerators, three
moderate inhibitors and three effective corrosion inhibitors. However,
larger basis sets increased computational times ∼100-fold (for details
see SI, section II). This analysis suggested that compounds with small
HOMO-LUMO gap are generally better corrosion inhibitors for CP Mg.
The correlation of the energy gaps with the inhibition efficiencies is
quite high for this material in comparison to studies on Al based alloys
where the correlation was essentially zero and the frontier orbital en-
ergies may already account for 50% of variance in the data. However,
complementary features are needed to further improve the R² value of
our model. Hence, we used two additional descriptors to train the ANN
model (see Fig. 2), the number of hydroxyl and carbonyl groups in the
molecules. These were considered important because they are gen-
erating chelating moieties (carboxylates and phenols) that are involved
in binding the compounds to metals. A fourth molecular descriptor that
distinguishes between aromatic and aliphatic molecules was also used
because aliphatic compounds generally have higher HOMO-LUMO gaps
than aromatic molecules for a given level of corrosion inhibition (see
Fig. 1). A three layer feed forward network with one hidden layer was
trained to predict the experimental IE values for CP Mg 220 [6] using
the resilient back propagation (rprop+) algorithm in RStudio [55]. The
source code for the ANN is provided in the supporting information (SI,
section III).

To assess the ability of the ANN model to predict IE for new can-
didate modulators, the dataset was divided in a training (85%, 60
modulators) and test set (15%, 11 modulators). Partitioning of the test

sets was based on random selection. However, random test set selection
from small heterogeneous data sets often creates large differences in the
prediction performance of an ANN model. Consequently, a cross-vali-
dation approach was adopted where the test sets were randomly chosen
six times to minimize selection biases for the model (for details see SI,
section I). Fig. 3 shows the quality of the model prediction of mod-
ulators in the training and test sets. The RMSD values for the predic-
tions of IE for the six cross-validation sets lie between 19% and 34%,
consistent with the experimental errors that were observed.

The complete dataset was subsequently used to train an ANN model
to make an a priori prediction of the performance of seven

Fig. 1. Correlation of calculated (TPSSh/def2SVP) HL gaps with the experimentally measured[6] inhibition efficiencies for CP Mg 220 (left). Inhibition efficiencies
are higher with smaller HOMO-LUMO gaps. Partitioning of the dataset into aromatic and aliphatic compounds revealed that aromatic compounds tend to have lower
HOMO-LUMO gaps than aliphatic compounds while exhibiting equal values for IE (right).

Fig. 2. ANN architecture employed for the prediction of the IE of magnesium dissolution modulators for CP Mg 220. The input layer accepts the four molecular
descriptors (ΔEHL, NOH, NCO, Iarom/aliph), the hidden layer generates the model, and the output layer node provides the calculated IE value for CP Mg 220.

Fig. 3. Correlation of the predicted consensus test set IE with the experimen-
tally derived IE for CP Mg 220. The dashed orange line constitutes perfect
correlation between training and test set. Data points are depicted as light blue
crosses. The grey line represents the linear least squares fit of the predicted and
measured values in the used test set including the fits R² and RMSD values. The
depicted RMSD value represents the mean deviation in absolute percent.
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h% to DGo
ads
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η% =
(U -  I)
U

×100.

η% =100×θ.

θ =
Keq[CI]

(1+Keq[CI])
.

ΔGads
o = −RTlnKeq, Significant Number 

of Publications

Select optimum CI’s from thermodynamics



Methodology
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η% =100×θ.

θ =
Keq[CI]

(1+Keq[CI])
.

ΔGads
o = −RTlnKeq,



qh% versus qXPS
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c-steel/1 M HCl
@ 4 hr immersion



qh%/qXPS: Impact on Keq/DGo
ads
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Significantly different values



….and using qXPS?

θ =
Keq[CI]

(1+Keq[CI])
.

(i) Maximum adsorbate coverage is a monolayer;
(ii) A dynamic equilibrium state has been achieved;
(iii) All adsorption sites are equivalent;
(iv) No adsorbate-adsorbate interactions perturb adsorption behavior.

MUST STILL demonstrate adherence to following 
criteria for application of Langmuir Isotherm:
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Summary
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• Validity of h% µ q is not guaranteed

• Accuracy of DGo
ads is questionable

Question utility of this approach 
for advancing CI selection
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• Adsorption Thermodynamics

•  Machine Learning

• Interface Characterisation

• Green CI’s
molecular descriptor used to train the ANN model. Calculation of the
HOMO-LUMO gap is computationally cheap and is relatively insensitive
to basis set size. We found that different basis sets (def2SVP, def2TZVP,
and def2QZVP) did not substantially influence the HOMO-LUMO gap
trend in a data set consisting of three dissolution accelerators, three
moderate inhibitors and three effective corrosion inhibitors. However,
larger basis sets increased computational times ∼100-fold (for details
see SI, section II). This analysis suggested that compounds with small
HOMO-LUMO gap are generally better corrosion inhibitors for CP Mg.
The correlation of the energy gaps with the inhibition efficiencies is
quite high for this material in comparison to studies on Al based alloys
where the correlation was essentially zero and the frontier orbital en-
ergies may already account for 50% of variance in the data. However,
complementary features are needed to further improve the R² value of
our model. Hence, we used two additional descriptors to train the ANN
model (see Fig. 2), the number of hydroxyl and carbonyl groups in the
molecules. These were considered important because they are gen-
erating chelating moieties (carboxylates and phenols) that are involved
in binding the compounds to metals. A fourth molecular descriptor that
distinguishes between aromatic and aliphatic molecules was also used
because aliphatic compounds generally have higher HOMO-LUMO gaps
than aromatic molecules for a given level of corrosion inhibition (see
Fig. 1). A three layer feed forward network with one hidden layer was
trained to predict the experimental IE values for CP Mg 220 [6] using
the resilient back propagation (rprop+) algorithm in RStudio [55]. The
source code for the ANN is provided in the supporting information (SI,
section III).

To assess the ability of the ANN model to predict IE for new can-
didate modulators, the dataset was divided in a training (85%, 60
modulators) and test set (15%, 11 modulators). Partitioning of the test

sets was based on random selection. However, random test set selection
from small heterogeneous data sets often creates large differences in the
prediction performance of an ANN model. Consequently, a cross-vali-
dation approach was adopted where the test sets were randomly chosen
six times to minimize selection biases for the model (for details see SI,
section I). Fig. 3 shows the quality of the model prediction of mod-
ulators in the training and test sets. The RMSD values for the predic-
tions of IE for the six cross-validation sets lie between 19% and 34%,
consistent with the experimental errors that were observed.

The complete dataset was subsequently used to train an ANN model
to make an a priori prediction of the performance of seven

Fig. 1. Correlation of calculated (TPSSh/def2SVP) HL gaps with the experimentally measured[6] inhibition efficiencies for CP Mg 220 (left). Inhibition efficiencies
are higher with smaller HOMO-LUMO gaps. Partitioning of the dataset into aromatic and aliphatic compounds revealed that aromatic compounds tend to have lower
HOMO-LUMO gaps than aliphatic compounds while exhibiting equal values for IE (right).

Fig. 2. ANN architecture employed for the prediction of the IE of magnesium dissolution modulators for CP Mg 220. The input layer accepts the four molecular
descriptors (ΔEHL, NOH, NCO, Iarom/aliph), the hidden layer generates the model, and the output layer node provides the calculated IE value for CP Mg 220.

Fig. 3. Correlation of the predicted consensus test set IE with the experimen-
tally derived IE for CP Mg 220. The dashed orange line constitutes perfect
correlation between training and test set. Data points are depicted as light blue
crosses. The grey line represents the linear least squares fit of the predicted and
measured values in the used test set including the fits R² and RMSD values. The
depicted RMSD value represents the mean deviation in absolute percent.
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Green CI: Definition

38

More sustainable/environmentally friendly??

Green CI
Sources



39Ana Moreno (MSc thesis, 2021)

• Acidic Solution
• C-steel/Iron

Literature Search: CINat



40Ana Moreno (MSc thesis, 2021)

Other Commercialisation Barriers

• Mass Production

• Production Cost/Profit

•  Toxicity/Biodegradability

•  Regulatory

• Life-cycle ‘greenness’



Summary
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CINAT:

• Not much progress/success to date

• Think beyond laboratory testing

• More systematic selection of candidates



Take Home Mesages
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• Interface Characterisation

• Adsorption Thermodynamics

• Green CI’s
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