

Degradation of Structural Materials - for UK Net-Zero 2050

Bill Hedges

Qatar Presentation for World Corrosion Day 24th April 2022

UK NATIONAL INSTITUTE FOR ADVANCED MATERIALS RESEARCH AND INNOVATION

National institute with regional footprint

Central Laboratory, National Nuclear Laboratory

£235m EPSRC investment:

- 6 new buildings
- 4 established centres

ROYCE

Royce Hub Building, The University of Manchester

Materials Innovation Factory,

University of Liverpool

Bragg Centre for Materials Research, **University of Leeds**

> Translation & Discovery Centres, **University of Sheffield**

Cranfield University

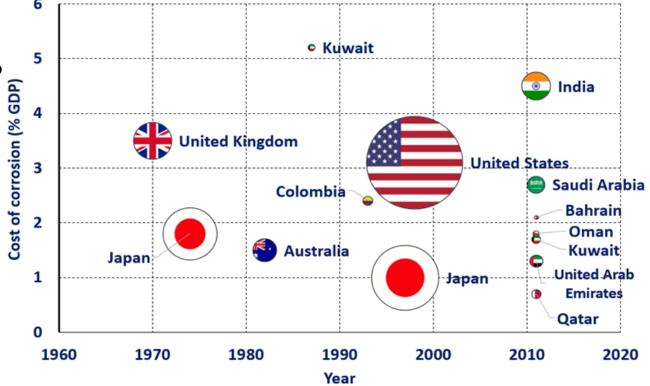
> Maxwell Centre, University of Cambridge

Uren Building, Imperial College London

Materials Research Facility UKAEA

Rex Richards Building, University of Oxford

UK Net Zero Commitment by 2050 - 27th June 2019


- First major economy in world to legislate to end it's contribution by 2050.
- Requires UK to bring all greenhouse gas emissions to net zero by 2050.
 - An absolute target
 - Previous target was relative: required a minimum 80% reduction vs. 1990 levels.
- Growth in "green collar jobs" to 2 million.
- Grow exports in the low carbon economy to £170 billion a year by 2030.
- Followed by numerous papers and studies on way forward
- 20th April 2021 Update: Reduce emissions by 78% by 2035 compared to 1990 levels
 - Achieves 75% of reduction needed by 2050.
 - Accelerates decision making

` []

Corrosion Remains a Global Problem

- Cost of Corrosion Estimated at 3.4% of Global GDP
 \$2.5 trillion worldwide
 UK 2020 GDP = \$2.83 trillion
 UK cost of corrosion ~\$100 billion

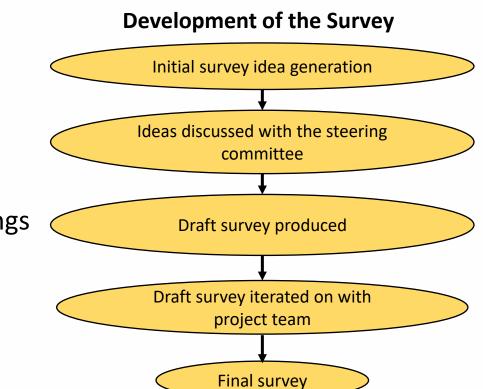
Cost of corrosion as a percentage of GDP by Year Bubble areas are scaled based on the cost as a proportion of world GDP using data from the NACE Impact Report 2016 and the World Bank

Structural Materials Degradation Study

- Henry Royce Institute in collaboration with Frazer-Nash Consultancy
 - Funded by the EPSRC (Engineering and Physical Sciences Research Council)
- Degradation issues affecting structural materials
 - Critical to delivering the UK's goal of net-zero greenhouse gas emissions by 2050.
 - Landscaping exercise (not a roadmap)
 - January April 2021

- Primary objective: Identify key R&D opportunities for investment by UK
 - Identify issues which could slow or prevent the transition.
 - Ensure the transition occurs in a safe, timely and efficient manner.
 - Highlight topics that are common to several industries.
- A convening activity for the UK materials community
 - Enabled by Royce with outputs available to everyone

Focused on five industries critical for the transition:


- 1. Wind power generation (onshore and offshore).
- 2. Nuclear fission (not fusion).
- 3. Hydrogen production and usage.
- 4. Transportation (Air, Road, Rail and Sea).
- 5. Carbon Capture and Storage (CCS).

Approach Taken

- Required input from sector experts
 Industrial & Academic
 - Industrial & Academic
- Questionnaire Survey
 - Targeted experts and social media
- Core Working Team
- Steering Team

- Leading academics
- Testing approach, survey questions, contacts, findings
- Collate Responses
- Review of Findings with sector experts
- Develop Landscape white paper

Focus of Survey Questions

- Identifying the sector opportunities and challenges in meeting net-zero 2050.
- Identifying and ranking specific degradation issues.
- Suggesting research priorities to address degradation concerns.
- Rating the UK's research strengths.
- Rating the UKs ability to commercialise research developments.
- Quantitative & Qualitative input.

• Some subjectivity in how summarised.

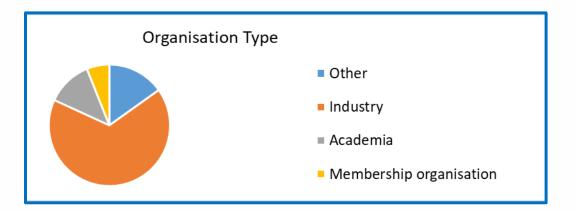
Survey Respondents

ROYCE

• 41 responses from organisations addressing degradation routinely

NNL	DNV	Universities:
Element Materials	Solar Turbines	• Manchester,
Technology	Lloyd's Register	Southampton
AMPP (NACE+SSPC)	Arup	Sheffield
SSE	Jacobs	Bristol
TWI	Total	• Leicester
TRL9	SegCorr	Birmingham
NPL	EDF	
ASTM		

Survey Respondents


41 survey respondents.

- Many covered multiple sectors.
- Which gave 123 sector inputs

Expertise split evenly across sectors.

Responses 25 22 20 17 15 15 15 14 15 13 12 10 5 0 Nuclear fission Wind Transportation Transportation Transportation Transportation Carbon capture Hydrogen (Air) (Rail) (including (Road) (Sea) storage (CCS) hydrogen substitutes such as ammonia)

Majority affiliated to industry.

Findings

- No "Show Stoppers"
- Numerous opportunities to improve.
- Sector specific topics not discussed in detail here.
 - e.g. Graphite degradation in nuclear reactors.
- Cross Sector topics & opportunities.

Findings Matrix

5 Sectors	21 Degradation Topics	6 Material Groupings	6 Themes
Nuclear Fission	Fatigue	Alloys for low	Design and manufacture
	Creep	temperatures	
Wind	Corrosion		Modelling
	Creep-Fatigue	Alloys for high	
Transport (Air, Road, Rail, Sea)	Corrosion-Fatigue	temperatures	Maintenance
	Inspection/monitoring		
Carbon Capture & Storage	Hydrogen Environment	Coatings for low	Characterisation and testing
	CO ₂ Environment	temperatures	
Hydrogen	New Materials		Knowledge and data
	In-Situ Imaging	Coatings for high	management
	Standards	temperatures	
	Mechanistic Models		Leadership and policy
	Lifing	Composites and	
	Test Methods	polymers	
	Long Term Testing		
	Manufacturing	Concretes	
	Additive Manufacturing (AM)		
	Recycling		
	Irradiation damage		
	Cathodic Protection		
	Characterisation		

Heat Map: Topics vs Industry Sector

	Industry Sectors							
Торіс	Nuclear fission	Wind	Transport - Air	Transport - Rail	Transport - Road	Transport - Sea	Carbon Capture & Storage	Hydrogen
Fatigue								
Creep								
Corrosion								
Creep-Fatigue								
Corrosion-Fatigue								
Inspection/monitoring								
Hydrogen Environmen								
CO2 Environment								
New Materials								
n-Situ Imaging								
Standards								
Mechanistic Models								
Lifing								
Test Methods								
Long Term Testing								
Manufacturing								
AM								
Recycling								
rradiation damage								
Cathodic Protection								
Characterisation								

• Corrosion, Fatigue & Creep appear as the most common degradation mechanisms.

• Numerous other opportunities identified.

Hydrogen (and Ammonia) Opportunities

- Repurposing of existing equipment
 - Gas infrastructure (e.g. pipelines, compressors)
- Primary concern: Embrittlement & cracking of steels
 - Possibly polymers as well
- Opportunities
 - Degradation Mechanisms not fully understood
 - Long term effect of hydrogen on materials
 - Inspection methods especially for cracking.
 - Development of common standards

A Selection of Cross Sector Findings

- 1. Design and manufacture
- 2. Modelling and simulation
- 3. Maintenance and inspection
- 4. Characterisation and testing
- 5. Knowledge and data management
- 6. Leadership and policy

Design and Manufacture

- Have a long-term view on structures too often driven by CAPEX and short-term ROI
 - e.g. use more alloys vs carbon steel
- Subsidise high-cost alloys so more widely used avoid corrosion needs a holistic approach.
- Involve degradation engineers at design
 - Design engineers not typically knowledgeable about degradation
 - e.g. wind & power engineers vs. oil and gas
- Develop common standards so everyone works to same specifications.
- For complex structures use a holistic approach.
 - Using modular approaches can keep problems in system (e.g. aircraft).

Modelling and Simulation

- Need better life prediction and life extension capability avoid repair and replace.
- Develop improved test methods for long term prediction of life.

Maintenance and inspection

- Look after existing infrastructure now avoid repairing & replacing.
- Develop and use more sensors to monitor degradation.

Knowledge and Data Management

- Improve data sharing
 - e.g. OEM's (original equipment manufacturers) & Operators often keep data confidential.
- Develop training for degradation control for staff in renewable industries at all levels.
- Have a common forum for sharing

Leadership and Policy

- Review UK approach to Research
 - Funding often requires novel content so challenging for some important topics e.g. Steel & Concrete
 - e.g. Concrete accounts for 8% of man-made CO₂ emissions
 - Review funding duration
 - Postdoctoral projects commonly last only 1-2 years, and fellowships 5 years.
 - As a result expertise is often lost, making longer research programmes difficult to fund and run
- High Level Leadership Required a clearly communicated strategy to achieve net zero.
 - From senior policymakers with a broad range of cross-sectoral academic and industrial stakeholders.
 - Prioritise In many sectors there are a range of green technologies often in competition with one another.
 - Provide investment confidence and sense of purpose for the research community.
 - Encourage collaborative efforts
 - Create a results focussed challenge (e.g., Faraday battery challenge).

Dr Andrew Bowfield Business Development Manager | Henry Royce Institute andrew.bowfield@manchester.ac.uk

Report Location: https://www.royce.ac.uk/collaborate/roadmapping-landscaping/degradation/

Bill Hedges corrosionguy@btinternet.com

