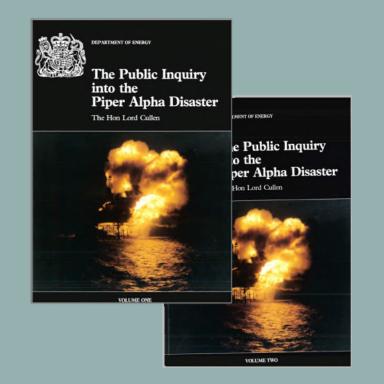


SECEs: It's time for a rethink

Martin Worth



The Origin of the Safety Case Another brief history

- Seven days after the incident, a public inquiry was directed to be held.
- The two volume "Public Inquiry into the Piper Alpha Disaster" was completed and released in October 1990.
- It made 106 recommendations for changes to North Sea safety procedures:
- These recommendations were all accepted and led to the adoption of the Offshore Installations (Safety Case) Regulations 1992.

The Forthwith Studies (in advance of and in preparation for the Safety Case)

Areas identified as requiring priority attention

Typically produced by large teams within the operators, ultimately evolving and expanding into

THE SAFETY CASE

Emergency Systems Review (ESR)

Smoke & Gas Ingress (SGI)

Fire Risk Analysis (FRA)

Evacuation, Escape & Rescue (EER)

The Cullen Inquiry made it clear what was the expectation, purpose and benefit of a Safety Case regime: -

Paragraph 17.35

... a matter of ensuring that every company produces an FSA [Formal Safety Assessment] to assure itself that its operations are safe ...

... secondarily ... A matter of **demonstrating** this to the regulatory body.

Paragraph 17.36

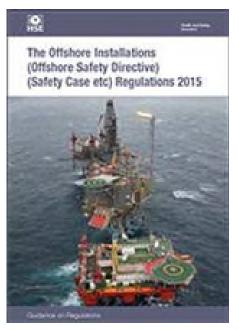
... show ... that the company has a suitable safety management system ...

Paragraph 17.37

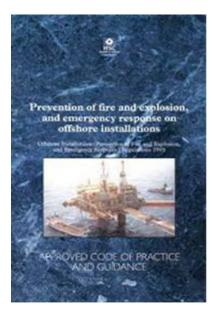
... a demonstration that the **hazards** ... have been identified and assessed ... are under control ... exposure of personnel has been minimised.

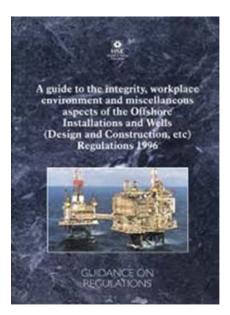
... should ... feature a demonstration that the threat from these hazards to the arrangements for refuge for, and evacuation and rescue of , personnel ..., is under control.

Paragraph 17.38


... installation ... possesses a **temporary safe refuge (TSR [TR])** ... and escape routes.

... it is proposed that **QRA** [Quantified Risk Assessment] be required [to demonstrate the adequacy thereof].


The Regulations


Safety Case Regulations

PFEER Regulations

DCR Regulations

Footnote – What came before the Safety Case?

7

Not just a Safety Case, but a Case for Safety Goal Setting and Self Assessment

A key requirement in [the Safety Case Regulations] regulation 16 is for duty holders to demonstrate in their safety cases that:

- (a) all <u>hazards</u> with the potential to cause a <u>major accident</u> as defined have been identified;
- (b) the **risks** have been evaluated; and
- (c) <u>measures</u> have been, or will be, taken to control those risks so as to ensure compliance with the relevant statutory provisions.

Footnote: Goal Setting? What did we have before?

Prescriptive Regulations Offshore Installations: Guidance on design, construction and certification

Fourth edition – 1990

HSE BOOKS

611 pages

2.3.1 REQUIREMENT TO CERTIFY OFFSHORE INSTALLATIONS

Regulation 3(1) requires that there be in force a valid Certificate of Fitness in Respect of an Offshore Installation before it can be:

In practice the function of certification is performed by six bodies appointed by the Secretary of State. These are:

. . .

- American Bureau of Shipping
- Bureau Veritas
- Germanischer Lloyd
- Lloyd's Register of Shipping
- Offshore Certification Bureau

Footnote: Certificate of Fitness

Contents

- 10 Installation layout
- 11 Environmental considerations
- 12 Corrosion protection
- 13 Fire protection
- 14 Site investigations
- 15 Loads
- 20 Foundations
- 21 Steel
- 22 Pile/sleeve connections
- 23 Concrete
- 24 Materials other than steel or concrete
- **30** Floating Installations
- 31 Stability, watertight integrity and ballasting
- 32 Station keeping
- 33 Self-elevating Installations (jack-up units)

- 40 Electrical equipment and systems
- 41 Instrumentation (no text)
- 42 Mechanical equipment
- 43 Well control equipment
- 44 Gas flares and cold vents
- 45 Gas and liquid containment (no text)
- 46 Lifting and handling appliances
- 47 Heating, ventilation and air conditioning (HVAC)
- 50 Living accommodation
- 51 (no text)
- 52 Noise and vibration
- 53 Illumination
- 54 Decks, stairways etc.
- 55 Helicopter landing area
- 60 Structural repairs and modifications
- 90 Emergency facilities
- 91 Emergency shutdown

12

Formal Safety Assessment Process Goal Setting

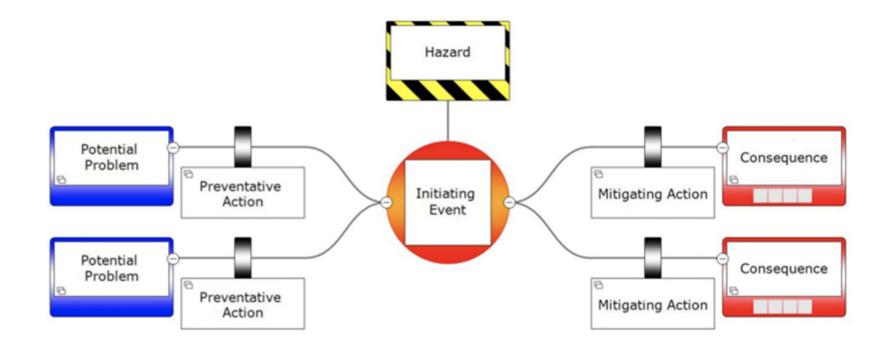
- 1. Identify Major Accident Hazards (MAH)
- 2. Identify Measures and Barriers
- Specify Measures (SECEs & Performance Standard Criteria)
- 4. Apply the Performance Standard process (Maintain / Assure / Verify)

SCR2015 Reg. 2

"major accident" means—

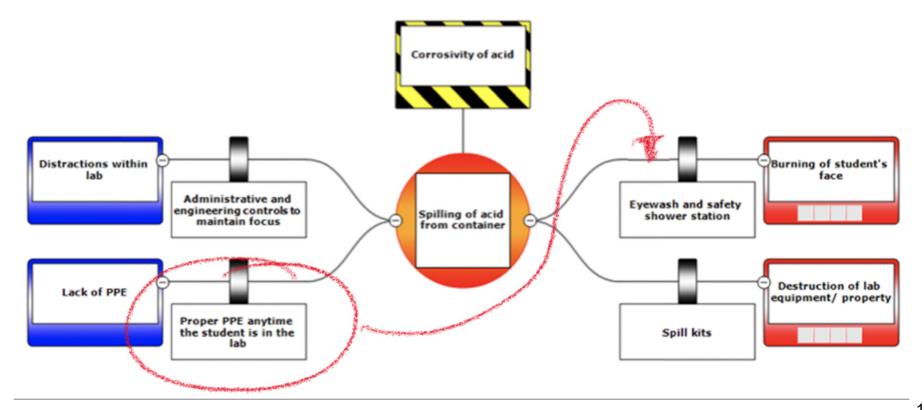
(a) an event involving a fire, explosion, loss of well control or the release of a dangerous substance causing, or with a significant potential to cause, death or serious personal injury to persons on the installation or engaged in an activity on or in connection with it;

(b) an event involving major damage to the structure of the installation or plant affixed to it or any loss in the stability of the installation causing, or with a significant potential to cause, death or serious personal injury to persons on the installation or engaged in an activity on or in connection with it;


(c) the failure of life support systems for diving operations in connection with the installation, the detachment of a diving bell used for such operations or the trapping of a diver in a diving bell or other subsea chamber used for such operations;

(d) any other event arising from a work activity involving death or serious personal injury to five or more persons on the installation or engaged in an activity on or in connection with it; or

(e) any major environmental incident resulting from any event referred to in paragraph (a), (b) or (d)


Bow tie Diagram – Visualisation of Measures

Real World Example of Bowtie and Measures

SCR2015 Reg. 2

"safety and environmental-critical elements" means such parts of installation and such of its plant (including computer programs), or any part of those:-

- a) The <u>failure</u> of which <u>could cause</u> or contribute substantially to a <u>major accident</u>; or
- b) A <u>purpose</u> of which is to <u>prevent or limit the effect</u> of, a <u>major accident</u>

Footnote: Why are there two types of SECE?

Measures

"Measures" is mentioned 49 times in this document

- Identify
- Specify
- Assess
- Implement
- ALARP

e.g. Principle 15

OFFSHORE MAJOR ACCIDENT REGULATOR

Assessment Principles for Offshore Safety Cases (APOSC)

Title	Assessment Principles for Offshore Safety Cases		
Publication Date	August 2021 Document (Rev:001) Identification		APOSC
Review Due	August 2022	Internal Reference	2021/174769
Target Audience	All OMAR Inspectors All stakeholders	Document Owner	HSE ED 7

Principle 15

Measures taken to manage major accident hazards should be described

- 66. A hierarchical approach should be used for managing major accident hazards, taking account of the effect of each measure in a balanced and integrated way. The recommended hierarchy is:
 - a. elimination and minimisation of hazards by design (inherently safer design)
 - b. prevention (reduction of likelihood)
 - c. detection (transmission of information to control point)
 - d. control (limitation of scale, intensity and duration)
 - e. mitigation of consequences (protection from effects).

Performance Standards / Safety Critical Elements

Typical Lists of Safety Critical Elements.

Performance Standards are written for each SECE.

No. of SECEs can vary depending on philosophy

001 Hy	drocarbon Containment Systems.docx
002 lg	nition Prevention Systems
003 Fi	re and Gas Systems
004 ES	SD System
005 Pi	peline Systems and Riser ESDVs
006 To	psides Isolation and Blowdown Valves
007 W	ell Isolation and Containment.docx
008 En	nergency Communications
009 St	ructural
010 Eg	ress and Escape
011 Ter	mporary Refuge
012 Em	nergency Power
013 He	elicopter Support Systems
014 TE	MPSC
015 Te	rtiary Means of Escape
016 St	andby Vessel and FRC
017 PP	E
018 Ac	tive Fire Protection
019 Na	avigational Aids
020 Lif	fting Equipment
021 Ve	ntilation
022 Pa	assive Fire Protection and Explosion Protection

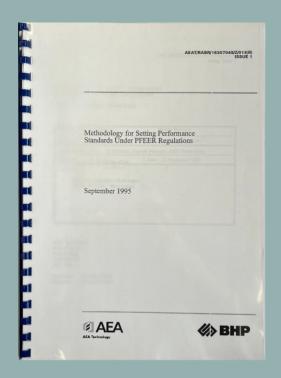
P1	Structural Integrity	P2	Legs Jacking & Locking System	
P3	Collision Avoidance System	P4	Process Containment Integrity	
P5	Pipelines & Riser Integrity			
P7	Prevention of Rotating Equipment Failures	P8	Process Area Ventilation	
P6	Process Shutdown System	P9	Well Containment	
P10	Relief Systems	P11	HVAC Systems	
P12	Ignition Prevention Systems	P14	Drilling System	
P15	Ballast System and Stability Management	P16	Anchoring & Mooring System	
P17	Crane & Lifting Equipment	P18	Corrosion Prevention & Corrosion Monitoring	
C1	Flammable Gas detection	C2	Fire Detection	
C3	Fire & Gas Control System	C4	Emergency Isolation	
C5	Riser / Pipeline ESDVs	C6	Reservoir Isolation & Containment	
C7	SSIV SSBV	C8	MACs	
C9	Emergency depresurisation	C10	Toxic Gas detection	
C11	Oxygen Depletion Detection	C12	Drainage & Containment	
C13	Drilling Well Control System	C14	HIPS System	
M1	Dropped Object Protection	M2	Blast Resistant Construction	
M3	Fire Mitigation	M4	Temporary Refuge	
M5	Fire Pumps	M6	Firewater main	
M7	Firewater Systems	M8	Foam Systems	
M9	Liquid & Gaseous Extinguishing Systems	M10	Portable / Trolley Mounted Extinguishers	
E1	Alarm & PA System	E2	Egress & Access Routes	
E3	Emergency Lighting	E4	Helideck	
E5	Internal Communications	E6	External Communications	
E7	Lifeboats (TEMPSC) & Boat Landings	E8	Liferafts	
E9	Maintained Power Supplies	E10	Means of Escape to Sea	
E11	Personnel Protective Equipment	E12	Rescue& Recovery Facilities	

Footnote: DNV Technica and the P&J Advertorial

No need to FEAR PFEER!

FARS – Functionality / Availability / Reliability / Survivability

PDMCR – Prevent / Detect / Control / Mitigate / Recover


Paradigm Setting Advertising

Early Attempts

Methodology for Setting Performance Standards Under PFEER Regulations

September 1995

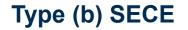
Early Attempts (c. 1995)

Early "Functionality" Performance Standard for:

Emergency Shutdown System

PERFO	ORMANCE STANDARD PROF	ORMA 1/3	
EMERGEN	CY SHUTDOWN (ESD) SYSTE	M (PSXXX)	
Aim: Automatically sense any abn continuously manned location non-essential equipment.	normal operational and equipment on and execute timely actions to iso	condition, alert the Operator at a olate hazardous inventories and trip	
	FUNCTIONALITY		
Function	Criteria	Verification	
Annunciate status of ESD valves	Annunciate at the operating console	Confirm by site survey	
Leakage past ESD sectioning valves to be acceptable when closed	Leakage rate required to be within acceptable limits	Fire risk analysis to assess if anticipated or measured leakage acceptable	
Tripping of non-essential equipment	Annunciate at the operating console	Function test against ESD Philosophy and Cause and Effect Diagrams	
Provision of boundary isolation	List of initiators Speed of response	Function test against ESD Philosophy and Cause and Effect Diagrams	
Provide shutdown functions on manual initiation	List of initiators	Function test against ESD Philosophy and Cause and Effect Diagrams	
Provide facilities to manually initiate ESD	Push button locations	Function test against ESD Philosophy and Cause and Effect Diagrams	

Later Attempts (c. 2019)

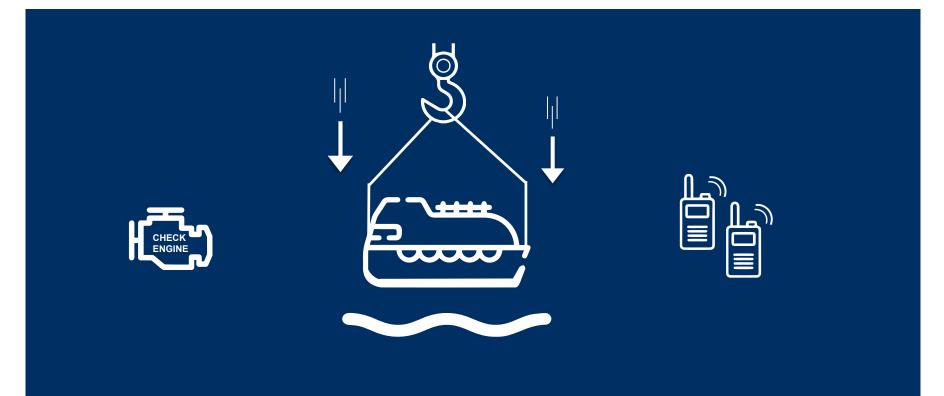


	C4: Emergency Isolation							
	Operational Performance Standard Functionality							
Function ID	Short Description	Functional Performance Requirements	Means of Operational Assurance	Operational Verification				
F1	ESD/USS Shutdown Function	ESD/USS system to continuously monitor process data, equipment status and inputs from other systems, in areas of the site where a major accident could occur. ESD/USS system to continuously monitor and accept signals to initiate appropriate emergency shutdown actions and valve closure signals in accordance with ESD/USS Cause & Effects Diagrams.	Assurance is provided by function testing of the ESD/USS systems ensuring that all associated control functions, trip and alarm points and executive actions including electrical isolations function correctly as per ESD/USS Cause & Effects Diagrams. • Taking credit for any relevant unplanned isolation event, which occurs within the period between scheduled tests. These events should be recorded, investigated and corrected as necessary OR • Planned isolation events (i.e. during planned TAR events), or, scheduled isolation function test if no creditable isolation event has taken place during the proceeding period, ensuring that different initiating elements are used on a rotational basis. Assurance in accordance with procedure L3-NNS- 14-020.	Review records to confirm that assurance tasks have been completed, results have been recorded correctly and any required remedial action has been carried out or a plan put in place. Witness assurance testing of the equipment to confirm it is being carried out in accordance with the assurance routine and the equipment meets the requirements of the performance standard. Function test the system ensuring that all associated control functions, trip and alarm points and executive actions function correctly as per Cause & Effects.				
F2	ESD Valve Operation, incl. Reaction and Closure Time	Overall time for full ESD/USS Emergency Isolation to be less than 60 seconds from detection of hazard deviation. All ESDVs to close on emergency shutdown with local reset only. (NBI All valves should close within 60 seconds with the exception of ESV5152 which has a 2 minutes timer in the logic).	Assurance is provided by simulation of process shutdown and recording of valve closure times from initiation mechanism.	Review records to confirm that assurance tasks have been completed, results have been recorded correctly and any required remedial action has been carried out or a plan put in place. Witness assurance testing of the equipment to confirm it is being carried out in accordance with the assurance routine and the equipment meets the requirements of the performance standard.				

Footnote - Another Complication Not just Operational Performance Standards

SCR2015 Reg. 2

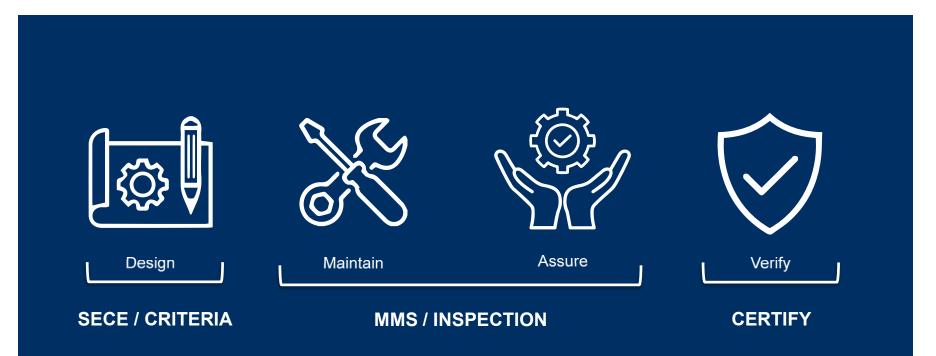
b) A <u>purpose</u> of which is to <u>prevent or limit the effect</u> of, a <u>major accident</u>


Key Safety Attributes? Criteria?

Key Safety Attributes

Footnote: When did all this come in?

?


The SECE Management Process

The SECE Management Process

31

SCR2015 Reg. 2

a) The <u>failure</u> of which <u>could cause</u> or contribute substantially to a <u>major accident</u>.

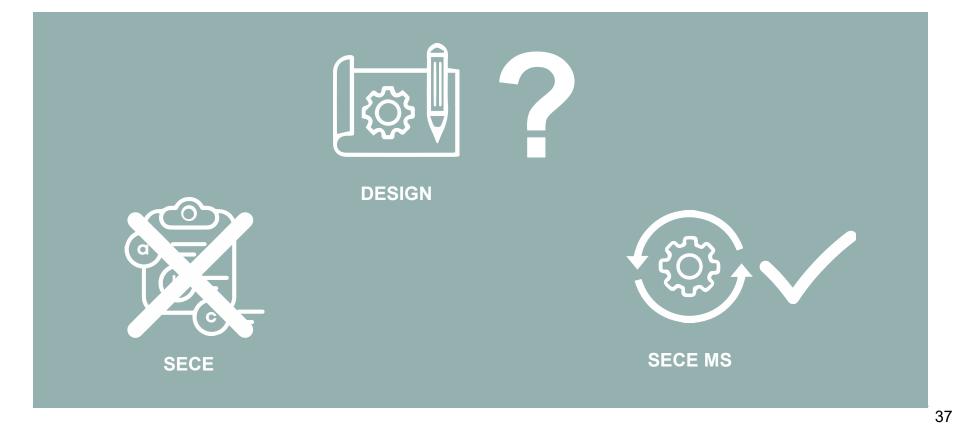
IMS Workflow

The SECE Management Process

The SECE Management Process

35

VERIFICATION ≈ **CERTIFICATION**


It's Fine ... It works ...

Operators, HSE and Verification Bodies <u>have made it work</u>!!

BUT THERE MIGHT BE A BETTER WAY?

Design

Design

Maintenance

Assurance

- Is the Management System well formulated?
- Is it looking at the correct items?
- Are the inspection tasks correct for the system?
- Are the tasks being carried out correctly?
- Are anomalies being identified and appropriately managed?
- Are there any backlogs at any point of the process?
- Has anything changed that require the Management System to be significantly updated?

Verification

- Examine operators Management System
- Examine inspection and reporting records
- Examine the Operator's assessment processes
- Ensure Operator is following their own Management System
- Sampling and witnessing

SECE Management Process

Design of SECE Management System

Maintenance Is the application of the process

Assurance is the audit of the process

Verification is an independent 3rd party audit of the whole process

Benefits and Challenges

BUT THAT'S JUST WHAT I THINK!

I WOULD LOVE TO HEAR YOUR THOUGHTS