Sensorlink

Corrosion and Erosion Monitoring Using High Accuracy UT – Subsea, Topside and Underground

Icorr – 8 June 20023

Kjell Wold Business Development Director

Email: kjell.wold@sensorlink.no

ISO 9001:2015 certified | IECEx certified | Achilles JQS qualified

Company Facts

Sensorlink specializes in innovative solutions for pipeline integrity management based on ultrasound technology

- Established in 1997
- Spinoff from NTNU/SINTEF (one of Europe's largest technology and R&D centers)
- Head office in Trondheim, Norway

Reference List - Recent Highlights (Apr 2023)

PipeMonit[®] and PipeMonit[®] Swarm (Dry)

More than 200 deliveries (<5500 sensors) delivered since 2011

- Middle East buried and open pipelines 20 stations 16 sensors each
- SEA offshore erosion monitoring 10 platforms, > 400 sensors
- Oceania pipeline 8 locations 8 sensors each
- Kazakhstan pipelines/refining 6 locations 24 sensors each
- Canada Oil Sands 10 Swarm belts 24 sensors each

UltraMonit[®] (Subsea)

38 subsea deliveries since 2008

- Azerbaijan 10 UltraMonit devices
- Australia UltraMonit retrofit system to existing pipelines
- Australia erosion monitoring 10 + 7 units
- West Africa diver installed retrofit system
- Middle East 7 UltraMonit Systems

N Sensorlink

Current Trends in Integrity and Corrosion/Erosion Management 1/2.

Inspection and monitoring both needed

- Inspection cover total asset according to plan
 - Periodic
 - Moderate/low sensitivity
 - Focus on safety fit for service repairs
- Monitoring cover selected locations
 - Continuous on-line
 - High sensitivity fast information
 - Proactive actions (mitigation, process control)
- Trend towards increased monitoring share of integrity program

Non-intrusive replace intrusive monitoring

- Intrusive (probes): high sensitivity/fast response
 - UT closing sensitivity gap
- Non-intrusive benefits
 - Safety
 - Penetration of pipe not needed
 - High pressure retrievals not needed
 - Particularly important in sour service (safety)
 - Low long time cost (retrievals and replacement of equipment not needed).
 - More reliable measurements
 - Measure metal loss where it is
 - Not affected by patterns or deposits influencing measurements

Current Trends in Integrity and Corrosion/Erosion Management 2/2.

Wired vs. wireless communication

- Wireless makes on-line communication affordable particularly brown fields
- Wireless standards established (ISA 100, WiHART)
- Wireless battery powered
 - Compromize on life/measurement frequency
- Wired solutions externally powered
 - Frequent measurements possible
 - Better trending, faster/more reliable information

Focus on actionable information

- Which decisions shall be made based on monitoring data?
- Type of data needed?
- Format of data preferred?
- Solutions to provide needed information?
 - Measurement technology?
 - Communication?
 - User interface (software)?

High Accuracy UT Drives Transition Towards Non-Intrusive Monitoring

Sensorlink UltraMonit®

Subsea pipeline wall thickness monitoring (corrosion and erosion)

- Accurate Pulse Echo measurements and advanced processing provide easy to understand data metal loss measured where it happens
- **High accuracy/repeatability** (down to 2,5 Um) ensures fast information allowing proactive actions and process optimization
- Safe and low maintenance/operational cost

Sensorlink PipeMonit[®] Swarm Topside/Landbased wall thickness monitoring

SensorlinkPipeMonit® Swarm

Cover for buried pipeline applications

Sensorlink Technology

Wall thickness monitoring using Single Element Pulse/Echo Transducers

- Non-Intrusive
- Direct wall thickness measurement of pipe wall
- Not sensitive to pipe wall thickness
- Matrix driven to cover area of interest
- Temperature rating from -40 to 550°C (pipe wall temperature)
- Fixed sensors combined with advanced signal processing detects wall loss from less than .1 mills (2.5 micrometres) pending on product and installation location

Swarm[®]/Ultramonit[®] Benefits

- Consistent over time independent of operator
- Data processed and digitalized on location
 - Direct use of data by user
 - Application software for data analysis not needed
- Straight forward data interpretation
 - Trusted information
 - Informed actions
- "Best in class" data accuracy and repeatability
 - Early actions before damage
 - Efficient corrosion and erosion management
 - Optimized process and operation

Corrosion and Erosion Monitoring Made Easy

N Sensorlink

Sensors Optimized for Different Applications

SWARM S1

- Temp -40 to 125
- IP 67
- Repeatability 0,0025mm
- daisy chained for maximum of 250 S1 sensors per datalogger
- Communicates through SDL
 or FDL Dataloggers
- Certification:
 - EX ib IIB T4 Gb

SWARM LT

- Temp -40 p to 150
- IP 66

•

- Repeatability 0,01mm
- Single channel sensor with a maximum of 4 sensors per datalogger (option 4 x 4 with Multiplexer wired solutions)
- Commucates through Swarm S2 Datalogger
- Certification:
 - Ex II 2G Ex ib IIB T4 Gb

SWARM HT

- Temp 150 to 350
- IP 66 and 68
- Repeatability 0,01mm
- Single channel sensor with a maximum of 4 sensors per datalogger
- Communicates through Swarm S2 Datalogger
- Certification:

Corrosion and Erosion Monitoring Made Easy

• II 1 GD Ex ia IIC T* Ga

SWARM UHT

- Temp 350 to 500
- IP 66 and 68
- Repeatability 0,01mm
- Single channel sensor with a maximum of 4 sensors per datalogger
- Communicates through Swarm S2 Datalogger
- Certification:
 - II 1 GD Ex ia IIC T* Ga

N Sensorlink

PipeMonit[®] Swarm S2 Datalogger (Ex)

Main Specifications:

- Ambient temp -40°C to 70°C
- Data output options:
 - Bluetooth
 - Wireless ISA 100 (WiHART Q3/2023 LoRaWan Q1 2024)
 - GSM
 - Modbus TCP/RTU
- Data delivered
 - Wall thickness
 - Temperature on pipe
 - "Data Quality Stamp»
- Power options
 - Battery operated (industry standard batteries)
 - 24 VDC/110-240VAC
- Ex rating
 - Ex II 2G Ex ib IIB T4 Gb

Pipemonit Swarm SDL Datalogger (safe zone)

Main Specifications:

- Ambient temp -20°C to 50°C
- Data output options:
 - USB
 - Modbus TCP/RTU
- Data delivered
 - Wall thickness
 - Temperature on pipe
 - "Data Quality Stamp»
 - CSV format
- Power options
 - 24 VDC/110-240VAC
- Ex rating
 - None, need ExD housing for ATEX zone
 - Barriers needed when installed in safe zone

Sensorlink Wireless Configuration Sketch

PipeMonit[®] Swarm for Topside/Landbased Applications

Magnetic clamp for Sensor installation (welded installation optional)

Strap installation allow flexibility in installation and configuration

PipeMonit[®] Swarm Platform Topsides/Plants

- Strap, magnet or welded sensor attachment
- Multiple Swarm LT sensors per strap
- Multiple Swarm LT sensors per Swarm S2 Datalogger
- Wired or wireless communication
- Batteries or permanent power

- Typical applications:
 - Carbon steel flowlines and process piping
 - Tuning and verifying corrosion inhibitors
 - Process tuning and root cause identification
 - Integrity verification
 - Corrosion Resistant Alloys
 - Erosion monitoring and wall thickness verification
 - Sand detection
 - Flow rate optimization
- Value
 - Safer operations
 - Extended equipment life
 - Reduced OPEX (planned maintenance and repair)
 - Optimized production rates
 - Non-Intrusive => Low investment low operating cost – no added operational risk!

PipeMonit[®] Swarm (Buried) Pipelines

• Typical applications:

- Unprocessed crude or gas pipelines
 - Bottom/Top of Line Corrosion
- Predictive:
 - Investigate critical points low spots, condensation points....
- Reactive:
 - Monitor corroded areas identified through ILI or other inspection
- Value
 - Safety reduce risk of unexpected incidents
 - Cost reduction
 - Optimize ILI frequency
 - Reduce if low corrosion rates
 - Increase if high corrosion rates
 - Plan maintenance and repairs
 - Extend asset life

Swarm Installation Buried Pipe

PipeMonit[®] Swarm on Riser Bend

Swarm S1 w/ protective cover

Swarm S1 with fire protection

PipeMonit[®] Swarm UT Sensor Belt for Extended Pipe-Life

- Typical applications:
 - Mining/Sand Oil Production
 - Monitor erosion/corrosion at critical clock
 positions
 - Rotate pipe to maximize pipe life based on erosion/corrosion measurements
- Value
 - Extended pipe life
 - Reduced risk for unexpected failure
- Key data
 - 24 sensors per belt
 - Repeatability typically 25 micrometer
 - On-line and off-line options
 - Not certififed for hazardous areas

Low-Cost Option for Field Applications!

PipeMonit[®] Swarm in Refineries

- Challenges:
 - Many locations
 - Difficult access
 - High Temperatures
 - Complex corrosion challenges
- PipeMonit[®] Swarm Benefits:
 - Sensors up to 500 °C
 - Cost-effective
 - Up to 4 sensors per datalogger
 - Wireless communication
 - Commercially available batteries, easy replacement
 - Data processed on location application software not needed
 - Best in class accuracy/repeatability

UltraMonit - Subsea systems

Fixed installations/ new pipelines

Retrofittable modular design

Retrofit installations

UltraMonit[®] - New Subsea Pipelines

Typical applications:

- Carbon Steel Pipelines
- High content of corrosive media like CO2 or H2S
- Gas condensate wells
- Often installed close to well (highest potential for corrosion and condensation/temperature drop)
- Corrosion monitoring on weld/HAZ

Value:

- Safety avoid unexpected corrosion damage and leaks
- Verify and tune corrosion inhibition
- Optimize use of inline inspection (ILI)

Reference: AMPP Corrosion 2021 Paper No 16715

Layout of UltraMonit[®] - New Subsea Pipelines

The UltraMonit[®] Unit is assembled by Sensorlink

- Client provide spool, with weld if corrosion monitoring on weld is important
- Sensorlink weld mounting plates and mount transducer cassettes and transducer housing
- Housing is pressure tested and filled with silicone oil
- Coating is applied
- Bumper frame with electronics is assembled to the spool

Capacities

•

- Wall Thickness Accuracy: <=0.1 mm (0,004 inches)
- Sensitivity: < 2,5um (0.1 mills)
- Temperature: 150° C (302 F)
- Water depth : 3000 meters (10 000ft)
- Design life: 30 + years
- Qualified according to API 17F

Corrosion monitoring made easy

Use Case, Caspian See

- 16 inch flowlines (10) feed condensate from 30 wells
- One UltraMonit In Situ installed on the first CS/CS weld after the FTA (Flowline Termination Assembly)
- Online and real-time feedback on corrosion rates used to evaluate inhibitor effectiveness
- 104 transducers per instrument

Reference: AMPP Corrosion 2021 Paper No 16715

Use Case – Offshore West Africa

- 2 x production lines 16,75 inch
- Online and real-time feedback on corrosion rates used to evaluate inhibitor effectiveness
- 700 transducers per instrument

Use Case, Offshore Australia

- Subsea tieback, 31 km
- 2 x 24 inch pipelines from field to FPSO
- One UltraMonit In Situ installed close to PLET on each pipeline
- Online and real-time feedback on corrosion rates used to evaluate inhibitor effectiveness
- 700 transducers per instrument

UltraMonit[®] Subsea Corrosion/Erosion Monitoring

Concept:

- Installed on X-mas tree before installation or during dry maintenance
- Array of Ultrasound transducers
- Subsea clamp with sealing
- Pressure compensated
- Retrieveable datalogger
- Self contained unit with batteries or connected to subsea control system

Value:

- Safety: Avoid unexpected erosion damage and loss of containment
- Economics
 - Early warning if sand production/erosion increase extended asset life
 - Optimize production rates versus sand production/erosion rates

Subsea clamp with sealing

Corrosion monitoring made easy

UltraMonit[®] Subsea Retrofit

Tool for non-intrusive wall thickness monitoring.

Provides pipe wall temperature, wall thickness, corrosion/erosion rate, and corrosion profile estimation.

Typical build-up of UltraMonit® retrofit

- Bumper frame
- Clamp with transducer elements
- Datalogger
- Battery/batteries

The transducers can be arranged according to client requirements, either in elements or in a matrix to cover more pipe wall

- Capacities
- Accuracy: <=0.1 mm (0,004 inches)
- Sensitivity: < 10um (0.4 mills)
- Temperature: 150° C (302 F)
- Water depth : 3000 meters (10 000ft)
- Design life: 15 years

UltraMonit[®] Shallow Water Subsea

- Actual application 50 meters
- 40 High Accuracy UT sensors bottom of pipe
- Sensors in closed oil filled chamber
- Data logger installation/replacement by diver or ROV
- Upgrade to external power/online communication possible
- Installation 2023

Proactive corrosion and erosion management

Ultramonit[®]/Swarm[®] measurements allow proactive use of corrosion/erosion monitoring data

- Inhibitor tuning
- Optimized production rates
- Crude feed blending

Metal loss versus time data (one sensor) from erosion test stainless steel pipe. Unfiltered, temperature compensated data. Observe random variations in +/- 2 micron range

Suggested approach:

Set flag when corrosion/erosion rates exceed random variations:

- Warning:
 - 1 day rate exceed 1 mm/y
- Managing
 - 1 week rate exceed 0,2 mm/y
- Integrity
 - 1 month rate exceed 0,05 mm/y

Flag settings tuned to actual measurement variations

2,7 micron/day = 1 mm/y 2,7 micron/week = 0,14 mm/y 2,7 micron/month = 0,03 mm/Y

Accuracy/response time can be improved by more frequent measurements/filtering (wired systems)

Ultramonit[®]/PipeMonit[®] Swarm Data

Efficient tracking of corrosion/erosion distribution and growth

Data processed and digitalized on location – straight forward data interpretation and reporting

Format for metal loss mapping subject to change

Distribution of UT sensors at Subsea Bend

Intrusive vs Non-Intrusive Sand/Erosion Monitoring (SL Swarm)

- Both systems measure erosive effect of sand particles
- Intrusive system
 - + Very high sensitivity 0,01 0,1 micrometer very fast response to sand production
 - + Multiple elements increased probability for detecting sand
 - - Intrusive
 - Costly access systems, probe consumed, field retrievals, extra turbulence, wake frequency qualification
- Sensorlink Swarm
 - +/- High sensitivity (2,5 micrometer) fast response
 - + Erosion at pipe wall measured directly
 - + Data processed on location direct transfer to DCS
 - + Non-intrusive
 - Safety not compromised, maintenance free, no additional erosion caused by intrusive probe

NOTE:

Quantification of sand based on erosion rates is possible in theory, but highly dependent on flow rates and not recommended by Sensorlink

Summary

- Full range of topside and subsea solutions.
- Array of high accuracy pulse echo sensors provide:
 - High resolution/repeatability (2,5 micrometers)
 - Wall thickness measurements easy to understand and relate to
 - Heat maps for distribution of erosion/erosion rates
- Combined solutions with intrusive and non-intrusive corrosion and erosion monitoring available
- Sensitivity of high accuracy UT allows proactive corrosion/erosion/sand management

Fast and reliable information that is easy to understand => better operational decisions

Try It!

Suggested start-up solution with Swarm LT sensors in bend

1 – 4 LT sensor wired to Swarm S2 datalogger (max 10 meters)

> Laptop PC – Pipeview Software

Bluetooth

Note: Antenna applicable for wireless communication only

🔥 Sensorlink

Thank You for Listening

Kjell Wold

Business Development Director

Email: kjell.wold@sensorlink.no

ISO 9001:2015 certified | IECEx certified | Achilles JQS qualified

Combined Intrusive and Non-Intrusive Solutions

Axess-Corrosion:

Full range of intrusive corrosion and erosion monitoring

- Access Fitting Assemblies
- Corrosion and Erosion Probes
- Injection Systems
- Instruments Transmitters

Innovation award at AMPP Corrosion 2023 – Axess Janus Guard System

Corrosion and Erosion Monitoring Made Easy

N Sensorlink

Potential for further enhanced measurement accuracy

Example from sand/erosion trial:

Red: Wall thickness using Sensorlink default temperature compensation (CS) Blue: Measured temperature

Black: Wall thickness, temperature compensated using improved temperature coefficient (SS)

Accuracy/sensitivity can be enhanced by:

- More frequent measurements and averaging to eliminate random variations (system power dependent)
- Select measurement times to avoid periodic fluctuations (e.g day/nigth)
- Tune temperature compensation to actual material and temperature coefficients