

Oilfield Microbiology and Microbiologically Influenced Corrosion – Analysis & Monitoring

Dr Carol Devine 22nd August 2023

ICorr Aberdeen Branch - Corrosion Awareness Day 2023

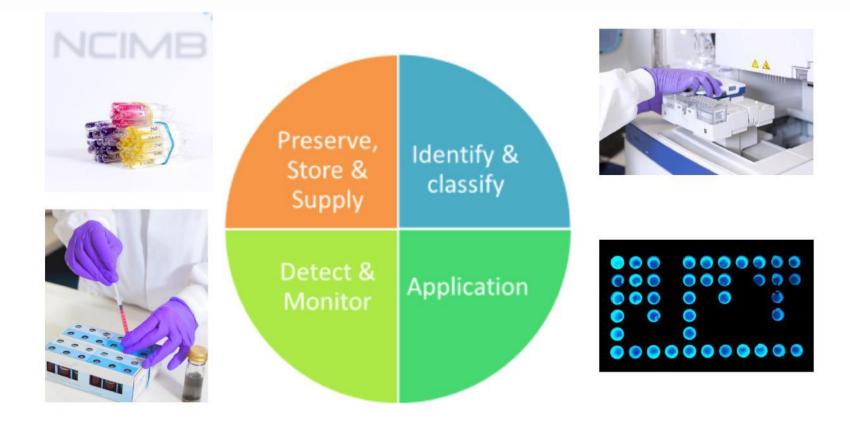
CINSTITUTE OF CORROSION

Dr Carol Devine, Consultant Microbiologist, NCIMB Ltd

BSc Microbiology University of Aberdeen

PhD Subsurface molecular ecology University of Aberdeen

Commercial
Microbiology /
Intertek 11 Years



. 10 years

CINSTITUTE OF CORROSION

We are all about managing microorganisms.....

Microbiology | Identification | Biological Storage

Preserve, store and supply: The culture collection

- Largest collection of industrial, marine and food bacteria in the UK
- We have approx. 10,000 strains; 300 genera; 2000 species and growing!

- Mainly bacteria, plus yeasts, plasmids & bacteriophage
- Sold to companies and universities globally
- Industrial applications

Introduction to Microbiology

Oilfield Microbiology

Microbiological Issues

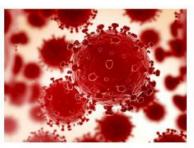
- Where do the microbes come from?
- What are the consequences?

Microbiologically Influenced Corrosion (MIC)

- Systems
- Samples

Monitoring & Management

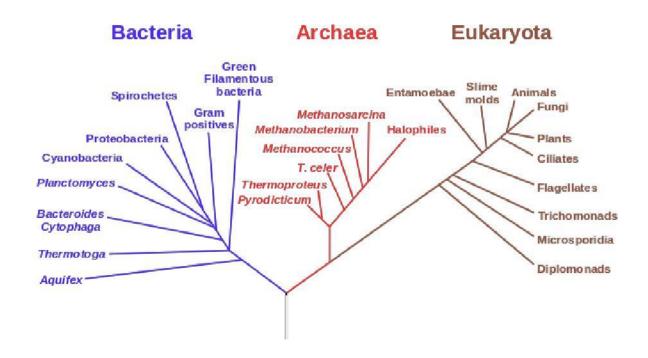
- Analytical Techniques
- Data Trending

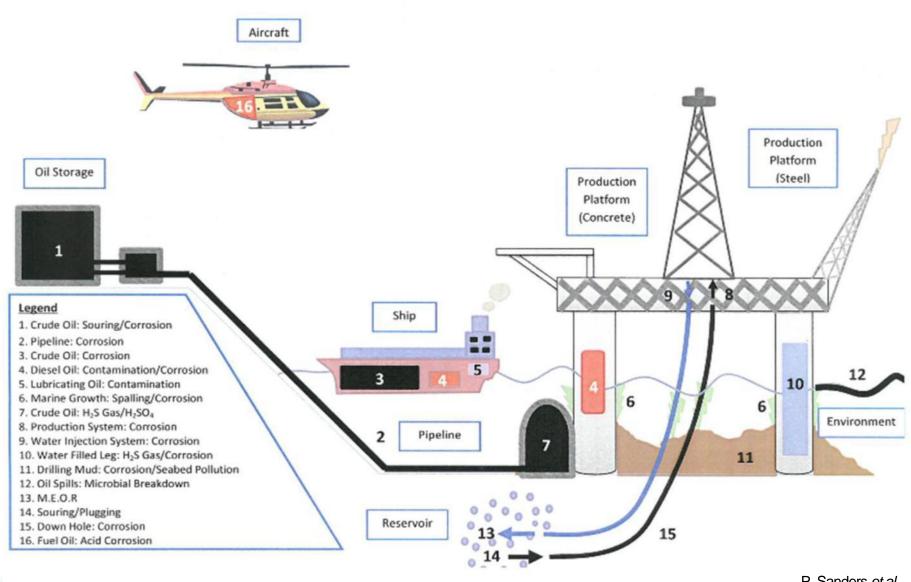


Microbes

Plus

• Viruses




Plus

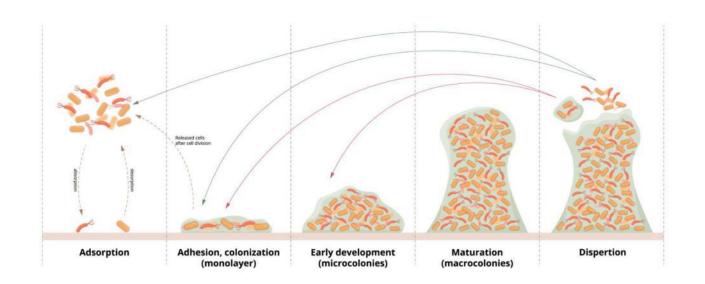
Archaebacteria

Tree of Life

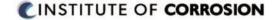
P. Sanders et al.

Systems affected by the presence and activity of micro-organisms:

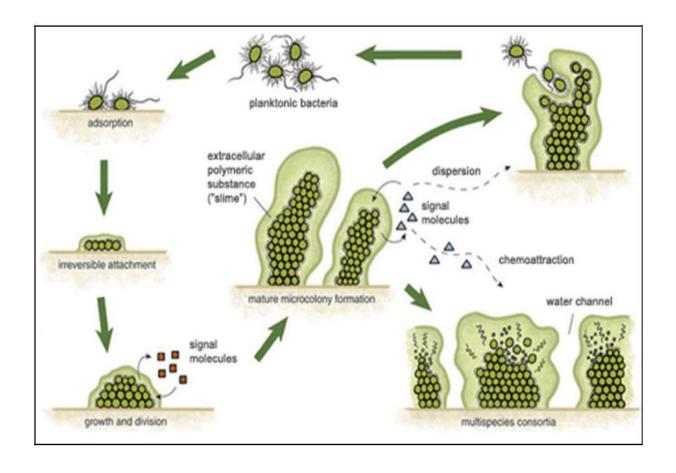
- Production
 Seawater Cooling
- Water Injection Cooling/heating
- Produced Water Firewater
 Reinjection (PWRI) Diesel storage &
- Ballast water distribution



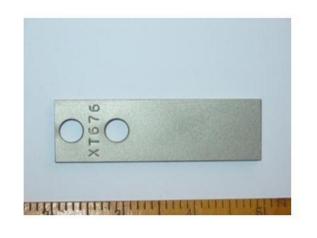
The aim of the oilfield microbiologist is to generate useful and appropriate data in order to:


- Predict which particular systems, vessels, pipelines, locations are under threat from microbiologically influenced corrosion (MIC)
- Prioritise areas for treatment according to budget and time available
- Apply and monitor appropriate strategies to mitigate against the effects of MIC or biofouling

Planktonic – bulk phase from water, crude, diesel, cooling medium


Sessile — biofilm from coupons, bio-sidestreams and/or other intrusive devices

Biofilm lifecycle



Sessile – biofilm from coupons, bio-sidestreams and/or other intrusive devices

Monitoring biofilm formation using corrosion coupons

Sessile
microbial
samples
and
weight
loss
analysis

Monitoring and Management — analytical techniques

Choice of analytical technique depends on what you are looking for — and on the budget!

MIC is a highly complex microbial process which is thought to involve:

- sulfate-reducing bacteria
- sulfate-reducing archaea
- methanogens
- acid-producing general heterotrophic bacteria (APGHB or APB)
- Iron-utilising bacteria
- (general heterotrophic bacteria)

ICorr Aberdeen Branch - Corrosion Awareness Day 2023

Testing for: sulfate-reducing bacteria (SRB) general heterotrophs acid-producing bacteria nitrite-reducing bacteria bacteria and fungi in diesels nitrate-reducing bacteria

sulfate-reducing bacteria
sulfate-reducing archaebacteria (SRA)
methanogens
Total archaebacteria

Techniques: microscopy (DAPI)

traditional viable counts (MPNs)

molecular techniques - qPCR, FISH, DAPI, ATP

Chemistry: pH, sulfide, bisulfite, volatile fatty acids (VFAs), chlorine residuals, total iron, nitrite, nitrate, sulfate etc

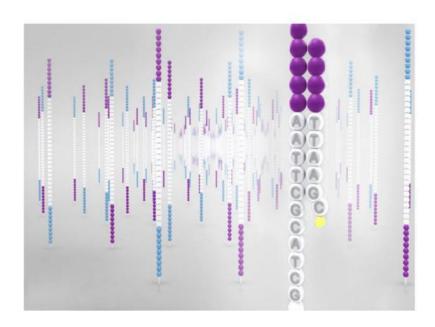
1. Triplicate MPNs

- Can detect a variety of active Media must match microbes environmental conditions the
- Can be performed in field by sample comes from i.e., trained personnel temperature and salinity
- Vast body of historical data Detects less than 5% of the total community
- Syringe 2
 Syringe 3
 Syringe 4

 3 A,B,C

 4 A,B,C

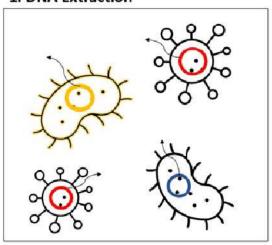
 SRB incubation period is 28 days (according to TMO194)

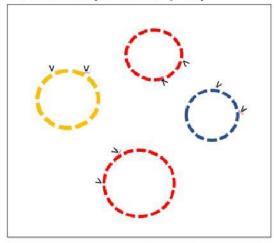

2. qPCR

- A laboratory technique based on the polymerase chain reaction
- Used to amplify and simultaneously quantify a targeted DNA molecule
- The cells are lysed, and a chemical reaction set up where the DNA is amplified exponentially
- A DNA-binding dye binds to all double-stranded (ds)DNA in the PCR reaction, causing fluorescence of the dye
- An increase in DNA product therefore leads to an increase in fluorescence
- Allows DNA concentrations to be quantified and the number of cells present in the original sample to be estimated.

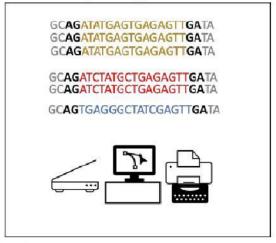
3. Metagenomic Analysis (NGS)

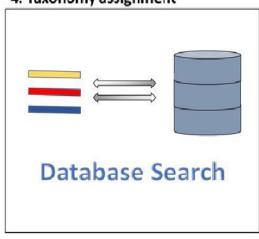
- Application of New Generation Sequencing to characterise the total microbial community
- Identifies all micro-organisms present

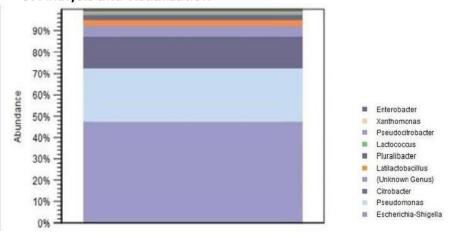




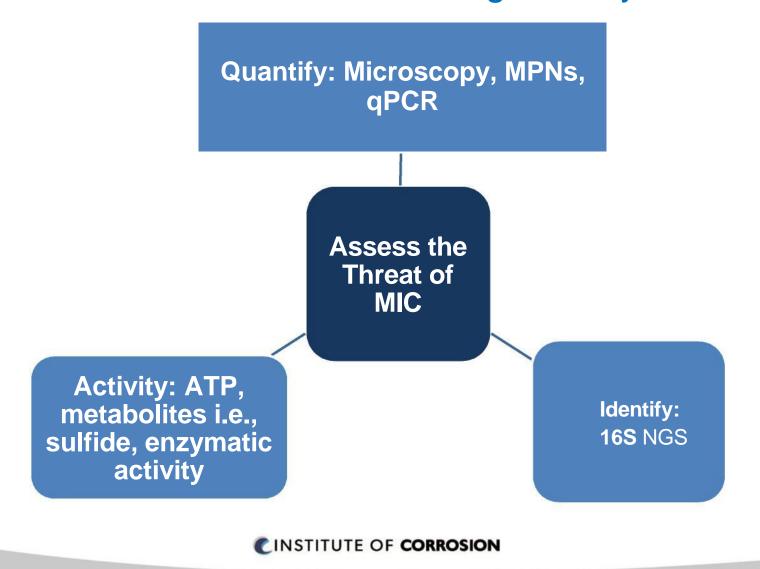
Sequencing


1. DNA Extraction

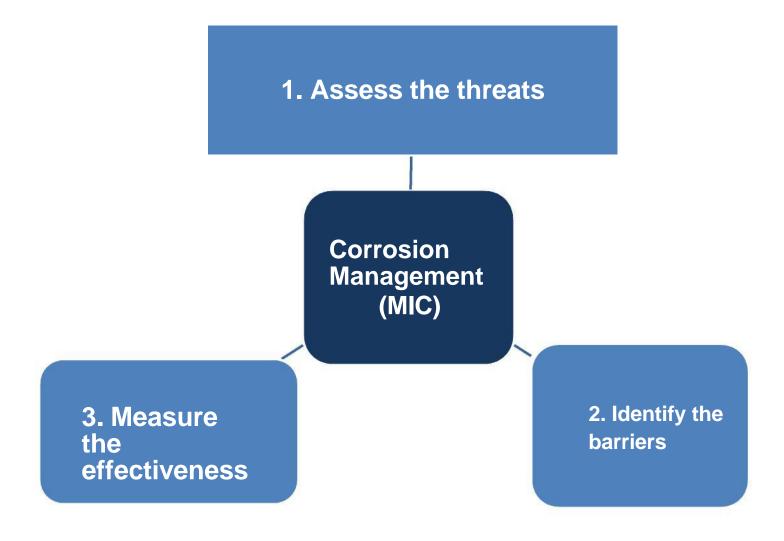

2. Gene Amplification (PCR)


3. DNA Sequencing

4. Taxonomy assignment



5. Analysis and visualization



How do we apply these techniques to give us data that we can use to manage our systems?

Corrosion Management

Assessing the Threat of MIC

The threat of MIC is defined as the product of microbial load (cell abundance or bioburden) and the community composition i.e.,

- a low threat is defined as a low bioburden with innocuous genera of microorganisms present.
- a high threat is defined as a high bioburden (high qPCR data or high MPN cell counts) plus the presence of detrimental/deleterious microorganisms associated with MIC, souring and biofouling.

Therefore, both enumeration and identification are required (preferably from the same sample) for an assessment of the threat of MIC to be performed, or to determine if MIC was a contributory mechanism when anomalies are found.

Assessing the Threat of MIC

High microbial numbers

Innocuous/less threatening microbial community

High microbial numbers

Threatening/deleterious microbial community

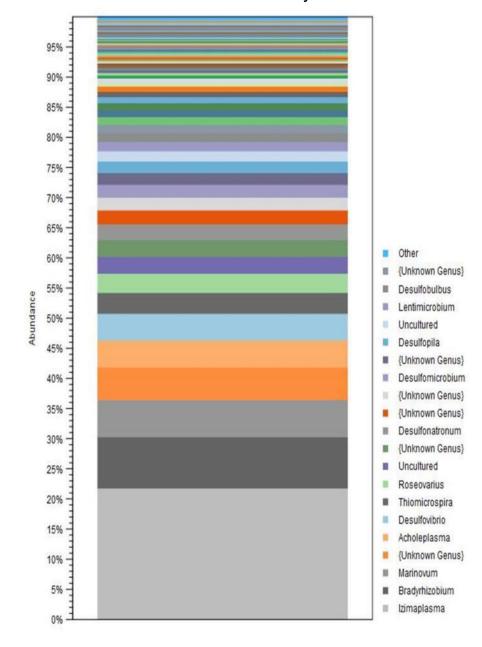
Low microbial numbers

Innocuous/less threatening microbial community

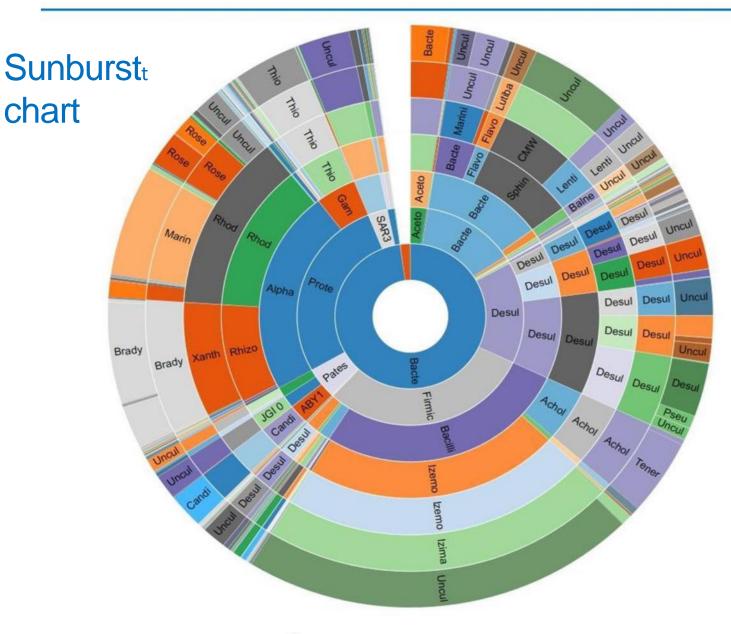
Low microbial numbers

Threatening/deleterious microbial community

Microbial community threats


qPCR Data - Quantitative

Sample 1	Total Bacteria	SRB	SRA	Total Methanogens
1. TB - Control Sample (Intact area)	6.4 x 10 ³	<ldl< td=""><td><ldl< td=""><td><ldl< td=""></ldl<></td></ldl<></td></ldl<>	<ldl< td=""><td><ldl< td=""></ldl<></td></ldl<>	<ldl< td=""></ldl<>
1. TB Swab from Pit	3.0 x 10⁵	<ldl< td=""><td><ldl< td=""><td>2.2 x 10³</td></ldl<></td></ldl<>	<ldl< td=""><td>2.2 x 10³</td></ldl<>	2.2 x 10 ³
1. TB Pit Solids	2.6 x 10 ⁵	<ldl< td=""><td><ldl< td=""><td><ldl< td=""></ldl<></td></ldl<></td></ldl<>	<ldl< td=""><td><ldl< td=""></ldl<></td></ldl<>	<ldl< td=""></ldl<>
Sample 2				
1. EB - Control Sample	5.2 x 10 ⁷	7.2 x 10 ⁴	1.6 x 10 ³	1.3 x 10⁴
1. EB Swab from Pit	2.9 x 10 ⁶	9.4 x 10 ³	<ldl< td=""><td>8.3 x 10²</td></ldl<>	8.3 x 10 ²
1. EB Pit Solids	4.6 x 10 ⁶	<ldl< td=""><td><ldl< td=""><td>3.3 x 10₄</td></ldl<></td></ldl<>	<ldl< td=""><td>3.3 x 10₄</td></ldl<>	3.3 x 10 ₄

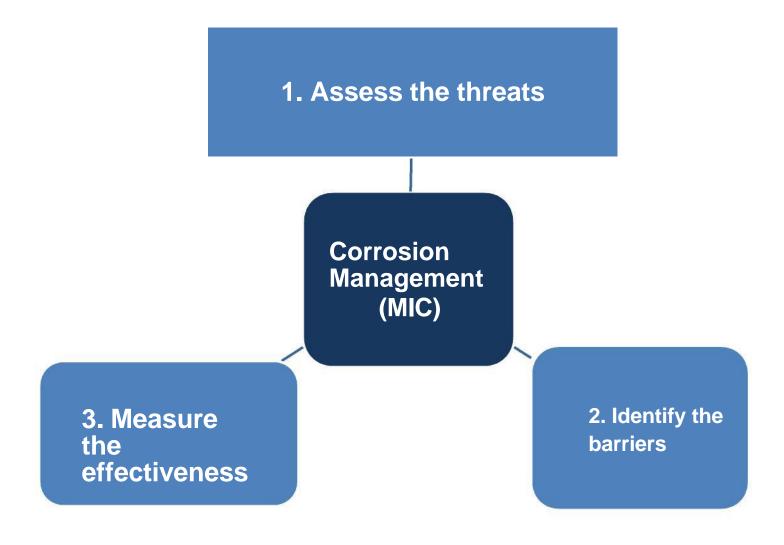

Metagenomics (16S NGS)

Use of New Generation Sequencing (NGS) (16S Metagenomics) to characterise the total microbial community

- Identifies all microorganisms
- Typical Bar Chart

CINSTITUTE OF CORROSION

ICorr Aberdeen Branch - Corrosion Awareness Day 2023


We are looking for 'deleterious organisms' - i.e., those involved in MIC

Classification	Activity	Issues	Genera
Sulfate reducers	Convert sulfate to H ₂ S	 Cause souring chemical corrosion reduction in quality of oil phase 	Desulfovibrio; Desulfomicrobium Desulfohalobium; Nitrospirae Thermodesulfovibrio; Archaeoglobus
Sulfur and thiosulfate reducers	Convert elemental sulfur or thiosulfate to H ₂ S	 Associated with severe MIC cause souring chemical corrosion reduction in quality of oil phase 	Anaerobaculum; Haloanerobium Fervidobacterium; Proteus; Thermotoga; Desulfuromonas
Nitrate-reducers	Convert nitrate to nitrite or nitrogen gas (depending on temperature	 Associated with MIC, pit formation under biofilms production of ammonia or nitrite 	Many genera, Pseudomonas are NRB
Methanogenic archaea	Convert CO2 to methane	 Utilise H₂ Can induce MIC 	Methanosarcinales; Methanobacteriales
Sulfide and sulfur oxidisers	Oxidise H ₂ S back to elemental sulfur (or sulfate)	 Associated with MIC Create elemental sulfur Can occur due to oxygen scavenger dosing (bisulfite) 	Sulfurospirillum; Sulfurovum Thiomicrospira; Sulfurimonas
'Acid-producers'	Fermentative, therefore excrete organic acids	 Associated with MIC via acidification Produced substrates for sulfate reducers 	Many genera Clostridia are acid-producers

qPCR Data - Quantitative

Sample 1	Total Bacteria	SRB	SRA	Total Methanogens	Most Abundant Genera (%)
1.TB - Control Sample (Intact area)	6.4 x 10 ³	<ldl< td=""><td><ldl< td=""><td><ldl< td=""><td>Sediminibacterium 28% Aquabacterium 14%</td></ldl<></td></ldl<></td></ldl<>	<ldl< td=""><td><ldl< td=""><td>Sediminibacterium 28% Aquabacterium 14%</td></ldl<></td></ldl<>	<ldl< td=""><td>Sediminibacterium 28% Aquabacterium 14%</td></ldl<>	Sediminibacterium 28% Aquabacterium 14%
1.TB Swab from Pit	3.0 x 10 ⁵	<ldl< td=""><td><ldl< td=""><td>2.2 x 10³</td><td>Sediminibacterium 22% Acidovorax 20%</td></ldl<></td></ldl<>	<ldl< td=""><td>2.2 x 10³</td><td>Sediminibacterium 22% Acidovorax 20%</td></ldl<>	2.2 x 10 ³	Sediminibacterium 22% Acidovorax 20%
1.TB Pit Solids	2.6 x 10 ⁵	<ldl< td=""><td><ldl< td=""><td><ldl< td=""><td>NA</td></ldl<></td></ldl<></td></ldl<>	<ldl< td=""><td><ldl< td=""><td>NA</td></ldl<></td></ldl<>	<ldl< td=""><td>NA</td></ldl<>	NA
Sample 2					
1. EB - Control Sample	5.2 x 10 ⁷	7.2 x 10 ⁴	1.6 x 10 ³	1.3 x 10⁴	Pseudomonas 28% Halanaerobium 21%
1.EB Swab from Pit	2.9 x 10 ⁶	9.4 x 10 ³	<ldl< td=""><td>8.3 x 10²</td><td>Salinisphaera 56% Sediminibacterium 19% Desulfoplanes 14% etc</td></ldl<>	8.3 x 10 ²	Salinisphaera 56% Sediminibacterium 19% Desulfoplanes 14% etc
1. EB Pit Solids	4.6 x 10 ⁶	<ldl< td=""><td><ldl< td=""><td>3.3 x 10⁴</td><td>NA</td></ldl<></td></ldl<>	<ldl< td=""><td>3.3 x 10⁴</td><td>NA</td></ldl<>	3.3 x 10 ⁴	NA

Corrosion Management

Monitoring

ICorr Aberdeen Branch - Corrosion Awareness Day 2023

Document type	Document Title	Contents
AMPP NACE	TM0212-2018, Detection, Testing, and	Standard test method for MIC sampling and
Standard	Evaluation of Microbiologically Influenced Corrosion on Internal Surfaces of Pipelines	testing on internal surfaces of pipelines
AMPP NACE	TM0194-2014, Field Monitoring of Bacterial	Describes field methods with an emphasis on
Standard	Growth in Oil and Gas Systems	culture-based testing for identifying microorganisms and NOT for MIC assessment
	(Under Review, publication end of 2023)	inicroorganisms and wor for whe assessment
AMPP NACE	TM21465, Molecular Microbiological Methods –	Standard procedures for sample collection, sample
Standard	Sample Handling and Laboratory Processing (UPCOMING)	processing, and laboratory analysis (includes gene targets and primer information) of microbiological samples.
AMPP NACE	TM21495, Laboratory Evaluation of the Effect	Test method for the testing of biofilms in the
Standard	of Biocides on Biofilms (UPCOMING)	laboratory using field samples for selecting biocide for biofilm mitigation.
Energy Institute	Guidance on the use of Biocides in the	Technical review of biocides, factors affecting
Guideline	Oil Industry, 2022	biocide effectiveness, advantages and limitations
		of biocide use, biocide application methods,
		compatibility issues, safety, environmental
		impact, and regulatory requirements.
Energy Institute	Guidelines on managing microbiologically	Identification of MIC threat for water
Guideline	influenced corrosion (MIC) in water	injection systems and monitoring the
	injection systems, 2022	effectiveness of biocide.

Thank you! Any questions?

Carol Devine <u>c.devine @ncimb.com</u>

Tel: 01224 009333

Mob: 07458 077932

Thank you for your attention...

