

The University of Manchester

Effect of Ageing Temperature on Localised Corrosion and Atmospheric Stress Corrosion Cracking of 15-5PH Stainless Steel

ICorr Aberdeen –TWI webinar 26/09/23

<u>Alyshia Keogh*1</u>, Anthony Cook¹, Emily Aradi¹, Zacharie Obadia², Phil Prangnell¹, Fabio Scenini¹

¹ University of Manchester, U.K.

² Airbus, Toulouse, France

* Alyshia.Keogh@Manchester.ac.uk

Contents

- Introduction
- Aims & objectives
- Material & Heat Treatments
- Experimental Techniques
- Results
 - Effect of Heat Treatment on Microstructure
 - Pitting Susceptibility
 - Passive Layer integrity
 - Electrochemical Noise
 - Atmospheric cracking
- Summary & Conclusions

Introduction

Maraging Steels

= martensitic + ageing

Properties

- High strength
- Good ductility
- Reasonable corrosion resistance

Applications

- Oil and Gas
- Aerospace

Introduction

Schematic of typical heat treatment (not to scale)

L. Couturier, et al. *Materials and Design*, vol. 107, 2016, S. Morito, et al. *Acta Materialia*, vol. 51, 2003,

Introduction

Maraging steels can be susceptible to Localised Corrosion (pitting or crevice corrosion) under certain conditions, which can be a precursor to Environmentally Assisted Cracking (EAC); chloride–induced Stress Corrosion Cracking (SCC) and/or Hydrogen Embrittlement (HE)

Pitting – accelerated corrosion within localised cavity resulting from increased acidity through hydrolysis of metal ions

Problem:

Hydrogen Embrittlement causes...

- Loss of tensile ductility
- Reduction in fracture toughness
- Catastrophic failure

Aims & Objectives

Understand the effect of microstructure on localised corrosion of 15-5PH to aid the design of future alloys

1. Characterise microstructure as a function of ageing treatment

2. Assess localised corrosion behavior of each microstructure

3. Link microstructural features to localized corrosion susceptibility

Material Composition

15-5 PH

Element	Fe	С	Cr	Ni	Cu	Mn	Si	Мо	Nb
Wt %	Bal	0.018	14.7	4.88	3.09	0.745	0.398	0.259	0.195

- Forms ^{Cu} Strengthening precipitates during ageing
- Increased levels of reverted austenite also expected as ageing temperature increased

Cu precipitates

Heat Treatment

- 1. Solution Treatment 1 hr at 1038 °C
- 2. Ageing treatment 4 hrs, varying temperature

Experimental Techniques

Characterisation

- Mechanical Testing
 - Tensile properties
 - Hardness
- XRD
 - Austenite phase fraction
 Based on methodology used by
 Tanaka and Choi (2003)
- Microscopy
 - SEM (Zeiss Sigma VP FEG)
 - TEM (ThermoFisher Talos F200X)

Experimental Techniques

Localised Corrosion

Electrochemical investigation of pitting susceptibility and reactivation behaviour

- Potentiodynamic Polarisation
 - Pitting susceptibility
- DL-EPR
 - Assessment of passive film integrity after heat treatment
- Electrochemical noise
 - Directly comparing microstructures

Experimental Techniques

Atmospheric Cracking

Study pit to crack transition and investigate cracking behaviour

- MgCl₂ salt deposits droplets
- Relative humidity (RH) of 30% or
 90% in environmental chamber
- 50 °C
- Test performed over 5 or 10 days
- Surface features of crack and crack cross-section analysed by SEM post test

Results

Austenite Phase Fraction

25 µm

Phase maps - qualitative measure of austenite content

25 µm

- Austenite nucleates along lath boundaries and PAGBs
- Austenite reversion greatest with 650 °C ageing treatment

Mechanical Properties

- Increase in ageing temperature results in:
 - Decrease in hardness
 - Decrease in UTS
 - Increase in tensile ductility

Elemental Distribution as a Function of Aging Temperature

STEM EDX - allows characterisation of different aspects of the microstructure

Increased Austenite content in 650 °C indicated by presence of Ni

Coarsening of Cu Precipitates with increased aging temperature Nb

Chromium Carbide Precipitation as a Function of Ageing Temperature

- Cr carbides found in 540 °C and 650 °C microstructures
- Line scan reveals slight Cr depletion around carbide in sample aged at 650 °C

ntensity (mCounts

-200

1.4

 Possible initiation site for localised corrosion

Microstructural Effects on Pitting Susceptibility

- 0.6 M NaCl
- 0.5 mV/s
- 1 µm diamond polish
- OCP measured for one hour
- On average 650 °C has the lowest E_{pit}
- However scatter is too large for E_{pit} to be considered statistically different
- Pitting is a stochastic process and PDP may not account for slight differences in microstructure

Experimental Conditions:

0.25 M H₂SO₄ 0.01 M KSCN

0.2

18

DL-EPR (Double Loop Electrochemical Potentiokinetic Reactivation)

Technique detects degree of reactivation (DOR) in steels:

• Reactivation loop usually related to loss of passive film on grain boundaries where Cr depletion has lead to sensitization

After anodic scan (DL-EPR)

After reverse scan (DL-EPR)

EBSD data

α-martensite
 Phase fraction
 γ-austenite

Reconstructed austenite grains

- Deeper etching along PAGBs
- High DOR measured through DL-EPR
 - Possible that reverted austenite has lower Cr content than matrix (1)

- Evidence of Cr depletion around Cr carbides
- High DOR in samples aged at 650 °C may be due to an increase in the heterogeneity of Cr in the microstructure, disrupting the passive film creating more initiation sites for localised corrosion

23

 Low DOR – indicates more even distribution of Cr in the microstructure Increase in DOR – Cr carbides found along GBs

- ECN
- Direct comparison of pitting susceptibility in 2 different microstructures

Electrodes coupled via Compact Stat in ZRA configuration

Experimental Conditions

- 0.15% FeCl₃ + NaCl (total Cl⁻ 0.6 M)
- Surface finish 400 grit SiC

Resultant current transients resulting from metastable pitting measured

- +ve transients indicate pitting on WE1
 - -ve transients indicate pitting on WE2

Potential drops when pit initiates and rises when pit repassivates

 More frequent metastable events on 650 °C compared to 450 °C

 More frequent metastable events on 540 °C compared to 450 °C

 More frequent metastable events on 650 °C compared to 540 °C

- Transients were split into positive and negative
- Frequency analysis was conducted on the transients

- Metastable events more frequent on microstructure with higher ageing temperature (650°C)
- Results indicate pit initiation easier on 650°C microstructure – would also suggest this microstructure is more likely to develop stable pits

Likely pitting susceptibility: 650 °C > 540 °C > 450 °C

	Frequency of events / Hz						
Galvanic Couple	450 °C	540 °C	650 °C				
450_650 (650GRD)	4 x 10 ⁻³		3 x 10 ⁻²				
450_540 (540GRD)	3 x 10 ⁻³	2 x 10 ⁻²					
540_650 (540GRD)		1.5 x 10 ⁻²	5 x 10 ⁻²				

Susceptibility to Environmentally Assisted Cracking

Testing method allows:

- Investigation of microstructure effect on SCC
- Study of pit to crack transition
- Investigation of cracking behaviour

- Stress applied via 4-point bend to 80% YS of 540 °C sample
- 1 μl MgCl₂ salt deposits with concentrations 1M, 0.1 M or 0.01 M
- Temp = 50 °C, Time = 5 and 10 day
- Pit diameter and crack length measured post test
- Stress-free specimens tested under identical conditions

Corrosion Morphology (Non-Stressed Specimens)

0.03

- Area of corrosion increases with initial droplet concentration – likely due to higher surface area remaining for higher concentrations
- 650 °C has largest area of corrosion suggests pit initiation time is smaller compared to 450 °C and 540 °C

0.02 Area 0.01 0.00 0.01 0.1 Initial droplet chloride concentration (M)

Atmospheric Corrosion - 1M MgCl₂

• Time – 10 days Samples tested without stress

- RH ~ 90% 1M MgCl₂
- 50 °C

Droplet Etching in Pit Viscinity

Edge of Droplet

Pits nucleate near edge of droplet with etched area around them

- Higher pH near edge of droplet
- Close to the middle there is:
 - Low oxygen
 - Low Cathodic activity
- Therefore potential is higher near the edge
- This causes the pit to nucleate near edge as it needs cathodic activity to support
- Cations are created within pit and migrate to cathode (near edge) which causes local acidification and therefore etching of area shown

EAC in Four-Point Bend Specimens

EAC in Four-Point Bend Specimens

Time = 5 days

Experimental Conditions

- 1 μl droplet from 1M MgCl₂
- Temperature 50 °C
- RH Saturated MgCl₂ 30%

- All samples susceptible to localised corrosion under conditions tested
- Cracks observed on material aged at 450 °C and 540 °C
- Extent of corrosion on 540 °C is greater than that on 450 °C
- No cracks in material aged at 650 °C

EAC in Four-Point Bend Specimens

Crack Pathway as a Function of Ageing Temperature

2x717 Sten Size: 0.96

- 450 °C thin crack travels ٠ along PAGB (Pathway entirely IG)
- Suggests decohesion and ۲ susceptibility to HE

PAGBs reconstructed using AztecCrystal parent grain analysis

- Crack travels through some grains for 540 °C – mixture of TG and IG cracking
- Possible Cl induced SCC

Crack Pathway as a Function of Ageing Temperature

650 °C

Sample surface

PAGBs reconstructed using AztecCrystal parent grain analysis

- Dish shaped pit large area of corrosion near surface. No cracking
 - Possibility that pit is fast growing
 - Initiation time required for pit to crack transition not reached

Summary and Conclusions

 Electrochemical investigations indicate 650 °C microstructure is most susceptible to pit initiation & most resistant to environmentally assisted cracking

 Greater frequency of metastable events indicates more susceptible pitting sites on 650 °C High DOR for 650 °C found through DL-EPR – may explain high frequency of pit initiation

 Susceptible sites likely related to Cr depleted zones associated with Cr Carbide formation or lower Cr content in reverted austenite

Summary and Conclusions

Susceptibility to EAC decreases with increasing ageing temperature – opposite to pit susceptibility

- Pit initiation time is longest (metastable pit frequency low with long lived events) for 450 °C microstructure
- Microstructure very susceptible to cracking – IG pathway suggests a mechanism involving decohesion via HE

 540 °C susceptible to cracking but mechanism may be Cl⁻ induced SCC indicated by TG crack pathway

- 650 °C develops large dish-shaped pits transition to cracking does not occur
- Initiation time associated with pit-to-crack transition may not have been reached
- Presence of austenite may inhibit cracking
 due to lower mechanical driving force

The University of Manchester

Engineering and Physical Sciences Research Council

Thank you for Attending our Joint Meeting. Any Questions?

Contact:

Email: <u>Alyshia.Keogh@Manchester.ac.uk</u>

Acknowledgments: Financial support by Airbus, EPSRC and Henry Royce Institute (grant EP/R00661X/1 and EP/P025021/1) for access to electron microscopes Material suppled by Aubert and Duval