ISO 12944 – The Corrosive Environment

ISO 12944 – The Corrosive Environment

Categorising corrosivity by type of environment

In a recent article, we introduced you to ISO 12944, the internationally recognised standard that provides the guidelines for the use of paint and coatings to protect assets from corrosion. The second part of the standard discusses the corrosive environment. This article introduces you to this part of ISO 12944 and the changes that were introduced in the latest revision in 2018.

What is the corrosive environment?

The corrosive environment describes the environment in which the asset to be protected is situated. There are many variables within corrosive environments. Combined, these determine how corrosive the environment is, and therefore the types of protective paint systems that are needed to help prevent corrosion (covered in part 5 of the standard).

When discussing the corrosive environment, two terms are used:

  • The local environment, which describes the atmospheric conditions around a particular component
  • The micro-environment, which is the environment at the interface between an element of a structure and the local environment

The environmental factors that determine an environment’s corrosivity are:

  • Climate (the weather, which is established by reference to historical data)
  • Atmosphere (the gases – including aerosols and particles – that surround the asset to be protected against corrosion)

The classification of environments considers temperature, relative humidity, and the time of wetness (the length of time that the metal surface is likely to be covered in a film of electrolyte that can cause atmospheric corrosion). In brief, atmospheric corrosivity calculations are made by summing the hours when the relative humidity is above 80% and the temperature is above 0°C.

Corrosivity is dependent on the corrosive agents present in the environment, especially gases such as sulphur dioxide, and salts such as chlorides and sulphates.

Types of corrosive atmospheres

When specifying the protective coatings that should be used on assets, ISO 12944 considers the type of atmosphere in which the asset is located, and categorises these from rural (away from corrosive agents such as sulphur dioxide) through to marine (where airborne salts are present).

If the asset is indoors, the potential for corrosion is usually lower because atmospheric pollutants are usually reduced. However, if the indoor asset is poorly ventilated or suffers from high humidity, then this increases the potential for condensation and, therefore, corrosion.

The categories of corrosivity are taken from a separate standard, ISO 9223;2012 – “Corrosion of metals and alloys — Corrosivity of atmospheres — Classification, determination and estimation”.

The scientific method for determining corrosion rate is determined by calculating the rate of metal loss on sample coupons (mild steel or galvanized steel) that are placed in the given environment. In practice, this is rarely performed for the determination of corrosivity for a paint specification. The corrosivity is determined by an objective estimation of the general description of the environment based on the descriptions in the standard, and the professional assessment by all parties involved in drawing up the corrosion protection specification.

Location of asset and corrosivity

When protecting assets from corrosion, ISO 12944 also considers whether the asset is in soil or water. Where assets are only partially buried in soil or partly immersed in water, the corrosion is usually localised to where the rate of corrosion can be highest.

Corrosion of assets that are immersed in water depends upon the type of water (fresh, brackish, or salt), how much oxygen is present in the water, the water’s temperature, and the substances that are dissolved in the water. There are three different ‘zones’ for corrosion, transitioning from the splash zone (wetted by spray), through intermediate (where wetting is fluctuating), to fully immersed.

Corrosion of those assets that are buried in soil depends on factors that include the minerals present in the soil and its water and oxygen content. The type of protection coating needed for buried-in-soil assets may differ along the length of the asset, because it is more likely that they will be buried in different soils – in such cases, the rate and severity of corrosion will differ.

Changes to ISO 12944 in 2018

There are three major changes in environmental categorisation as described in ISO 12944. There are now five environmental categories for onshore assets, ranging from C1 (very low corrosivity, typically in a climate-controlled indoor environment) to C5 (very high corrosivity environments, such as a coastal refinery).

A new environmental category has been introduced – the CX category, which covers offshore environments. This category is now covered in detail in a new section of the standard – part 9.

The IM categories, covering immersed assets, now include a new category (IM4) that deals with immersed assets with cathodic protection.

Key takeaways

In summary, the environment in which an asset is sited has a significant effect on the potential for it to corrode, and therefore the design of corrosion prevention system used. Factors that determine corrosivity of the environment include temperature, humidity, condensation, and corrosive pollutants in the atmosphere.

In classifying corrosion environments, ISO provides a reliable guide for the design, implementation and maintenance of structures and corrosion prevention systems and the applicable characteristics of paints and coatings that may be used.

In our next article in this series covering ISO 12944, we examine the section of the standard that deals with steel structure design. In the meantime, to learn about the Institute of Corrosion Coating and Inspection Training Courses – presented by IMechE Argyll Ruane and Corrodere – contact us today.

ISO 12944 – Are You Meeting the Latest Standards in Corrosion Protection?

ISO 12944 – Are You Meeting the Latest Standards in Corrosion Protection?

Corrosion protection of steel structures by protective paint systems

First introduced as an eight-part standard in 1998, ISO 12944 was updated for the second time in 2018 with some significant changes and additions. Setting standards for coatings for steel structures in atmospheric, immersed, and buried environments, ISO 12944 now has nine parts. This article introduces the standard, answering the key questions that professionals in corrosion prevention ask about it.

What is ISO 12944?

ISO 12944 is a globally recognised standard that lays out the rules and guidelines for the protection of assets from corrosion by use of coating systems and paint. Having been introduced in 1998, it was updated in 2007 and revised a second time in 2018.

The standard covers paint and coatings for steel structures in atmospheric, immersed, and buried environments. It does not cover coatings for concrete, non-metallic substrates, high-temperature surfaces, chemical immersion, and other uses.

The standard covers three factors when dealing with protecting steel structures from corrosion:

1.      Corrosivity

The potential of the environment to cause corrosion. To achieve this, the standard classifies the environment into categories that are rated on their ability to corrode unprotected steel.

2.      Durability

The expected lifetime of the coating system until its first major maintenance. The standard also emphasises that inspection and minor maintenance should be expected throughout the lifetime of the structure.

3.      Coating system specifications

Based on the corrosivity of the environment and the durability of corrosion protection needed, ISO 12944 acts as a guide to selecting the coating system required for the steel structure to be protected.

Who should use ISO 12944?

The standard is designed for use by all those who have some experience and knowledge of either specifying, manufacturing or using paint and coatings to protect steel structures against corrosion in different environments.

Those who need to adhere to ISO 12944 include asset owners, construction companies, engineering companies, corrosion consultants, paint manufacturers and painting companies. Individuals who must work to the standard include:

What standards does ISO 12944 detail?

Within the nine parts of ISO 12944, standards are provided across the following themes:

1.      Corrosivity, environments, and categories (parts 2 and 9)

Environments are classified across several categories, with recommendations that cover atmospheric exposure, fresh and seawater immersion, and buried surfaces.

2.      Design considerations (part 3)

The standards covered here deal with the basic criteria for the design of steel structures that are to be coated to avoid premature corrosion of the substrate.

3.      Surface preparation (part 4)

Standards for the preparation of surfaces are given, with the objective of minimising the risk of premature failure of the coating system used.

4.      Protective paint systems (part 5)

The paint system used will depend upon the environment in which it is to be used and the intended durability, and ISO 12944 covers this.

5.      Lab testing methods (part 6)

Testing methods and conditions are detailed in ISO 12944. Testing should help users decide which coating system should be used, and so standardises testing to enable more accurate and comparable testing that acts as a guide (but not exact information) for determination of durability within a given environment.

6.      Execution and supervision of paint work (part 7)

As you would expect, the standard also deals with how coating of steel structures is executed and supervised, either on-site or in the workshop. The standard includes pre-treatment and paint application methods.

7.      Development of specifications (part 8)

Part 8 of the standard deals with development of specifications for the protection of steel structures from corrosion by using coating systems. These standards also apply to the protection of individual components, and cover new work and maintenance both on-site and in the workshop.

What changed in the latest revision?

The major changes in the 2018 revision were:

  • The Introduction of part 9, which discusses offshore environments and establishes a new ‘CX’ category.
  • Alterations to the categorisation of onshore environments.
  • The introduction of a new category for coatings used in conjunction with cathodic protection in seawater and brackish water environments.
  • Changes to durability standards, and the introduction of a new category for very long durability of more than 25 years.
  • Changes to minimum dry film thicknesses and the minimum number of coats to be used. These specifications have been made mandatory to bring a halt to the ‘race to the bottom’ in which paint manufacturers were producing increasingly thin layers to compete on cost.
  • Standards for testing have been updated, with new cyclical testing recommendations to better replicate on-site conditions.

The standard also recognises the need to remain innovative. It states that new technologies and innovative products can be accepted, but the manufacturer must demonstrate suitability by either reference to third-party product testing or a demonstrable track record.

In future articles, we’ll take a closer look at the changes and updates in ISO 12944. You can also read about them in Corrosion Management Magazine.

The Institute of Corrosion Coating and Inspection Training Courses – presented by IMechE Argyll Ruane and Corrodere – will help ensure your painters and inspectors work to the latest industry standards and benefit from new technology and innovative approaches. For more information, contact us today.

Corrosion Courses Opening Again

Corrosion Courses Opening Again

Is it time to boost your career with training and development (T&D) in corrosion?

It’s been a tough period for training and development in the corrosion prevention industry. Because of the coronavirus lockdown, it was necessary to move a lot of corrosion T&D initiatives online. Here at ICorr, we adjusted our training and development initiatives as fast as we could, to ensure that as few people as possible were negatively affected as possible.

In a recent blog, we described some of these initiatives, including:

We can now give you more great news. Another of our approved training partners, IMechE Argyll Ruane, is now open for business and once more delivering Institute of Corrosion courses designed to address corrosion issues facing various industries.

Back in the classroom – with a difference

On 21st May, 2020, IMechE Argyll Ruane was able to announce that it is fully back up and running, and that those wishing to book onto its Institute of Corrosion courses can do so now.

These on-site courses, held at their exceptional facility at the Sheffield Business Park, will now benefit from a range of measures to ensure your health and safety as we move to a new normal economy. Training processes have been adapted, and there will be PPE in place to aid student and staff safety as well as social distancing methods. It’s on-site delivery of training with a COVID-19 twist.

Though there will be many visible differences to how training is delivered, which may include distance learning for some course material where possible and appropriate, one thing has not altered – you’ll still benefit from trainers with years of experience in the field and in delivering exciting training experiences. You can be certain that the training you receive will be accompanied by real-world examples.

The benefits of being ‘in the classroom’

While the benefits of online training have become apparent to many, there are many benefits only available through on-site training. These include:

  • The human touch – a quality that is, thus far, impossible to replicate online. The interaction that is possible between students and staff in the classroom helps all to learn. You’ll learn from questions asked by others, and the experience of all participating in the training course.
  • A classroom setting – this also helps you to hone soft skills (such as interpersonal skills) and develop your professional network more effectively.
  • Health and safety measures in place – you’ll be learning in a safe, clean environment away from the pressures of work or the interruptions at home.

A wide range of training and development in corrosion prevention

All the ICorr training and development opportunities lead you toward industry standards with internationally accredited and recognised courses and certification that help to accelerate careers in your industrial setting.

Aspects of corrosion prevention that are covered by these courses include:

Re-certifications are available online for:

  • Painting Inspector Level 1
  • Painting Inspector Level 2
  • Insulation Inspector
  • Passive Fire Protection Inspector
  • Pipeline Coatings Inspector Level 2
  • Hot Dip Galvanising Inspector

Is it time to give your career a boost through T&D?

Training is critical for your career. It helps improve your skills and abilities, and makes you more attractive to current and potential employers. Developing your value in your professional capacity is a choice that helps you in all economic conditions.

Your training and development also benefit your current employer. You’ll perform your job more effectively, improve productivity, and be more satisfied in your role (and less likely to look for another job elsewhere). Happy employees are great advertisements for any business, and make it easier to attract talented new hires.

The answer to the question “Is it time to give your career a boost through T&D?” is always yes – whether through online or on-site methods.

For more information about all ICorr courses and to discuss which is most appropriate for you, contact admin@icorr.org or search for your corrosion training course at IMechE Argyll Ruane.

Coating Inspector (Distance learning including marine and offshore) – ICorr Level 1 ONLINE

Coating Inspector (Distance learning including marine and offshore) – ICorr Level 1 ONLINE

Why apply to this course?

 

The comprehensive and flexible online ‘Train the inspector’ course has been developed to prepare candidates for the ICorr Coating Inspector Level 1 examination. The course is suitable for candidates with 12 months of industry experience or could also benefit those who require a knowledge of coating inspection but do not wish to take an examination. The Coating Inspection course also includes an additional module in Marine and Offshore Coating.

Level 1 personnel are qualified to carry out operations according to written instructions.

ICorr Level 1 certified personnel have demonstrated the competence to:

  • Set up and calibrate specific inspection or test equipment
  • Carry out tests and perform inspections against written criteria
  • Record and classify the results of tests and inspections against written criteria
  • Report the results.

Course Content

Take a look at our demonstration training units

 

Course details

40 hours of online studying over a maximum 12-month period. A one day practical and theoretical examination must be attended to acquire the recognised ICorr Coating Inspection level 1 Certificate. Examination dates

A one day practical workshop is available to prepare students for the practical assessment.

 

Course and examination enquiries

For more information including prices and availability please visit our training partner’s website at https://corrodere.com/traintheinspector/icorr-level-1-coating-inspector/ alternatively you can contact them on:

  1. +44 (0) 1252 732220
  2. meena@corrodere.com

 

Apply here

 

 

Coating Inspector (Distance learning including marine and offshore) – ICorr Level 1 ONLINE

Coating Inspector (Distance learning including marine and offshore) – ICorr Level 2 ONLINE

Why apply to this course?

 

The comprehensive and flexible online ‘Train the inspector’ training material has been developed to prepare candidates for the ICorr Coating Inspector Level 2 examination. The course is suitable for ICorr level 1 coating inspectors or candidates with over 12 months of coating inspection experience. The Coating Inspection course also includes an additional module in Marine and Offshore Coating.

Level 2 personnel are qualified to perform and direct inspection or testing operations according to established or recognised procedures including IMO PSPC MSC.215 (82 requirements) and they have demonstrated competence to:

  • Choose the extent of inspection or testing to be used (where agreed procedures allow);
  • Choose the inspection and test methods to be used (where agreed procedures allow);
  • Set up and calibrate inspection or test equipment;
  • Perform and supervise inspection or testing tasks;
  • Interpret and evaluate results according to applicable normative documents;
  • Define the limitations of application for common test methods;
  • Understand and transform normative document requirements into practical instructions adapted to the actual working conditions;
  • Prepare written test instructions (this is specific to Painting

Course Content

Take a look at our demonstration training units

 

Course Details

60-80 hours of online studying over a maximum 12-month period. A one day practical and theoretical examination must be attended to acquire the recognised ICorr Coating Inspection level 2 Certificate. Examination dates

 

Course and Examination Enquiries

For more information including prices and availability please visit our training partner’s website at https://corrodere.com/traintheinspector/icorr-level-2-coating-inspector/alternatively you can contact them on:

  1. +44 (0) 1252 732220
  2. meena@corrodere.com

 

Apply here

 

 

Coating Inspector (Distance learning including marine and offshore) – ICorr Level 1 ONLINE

Coating Inspector (Distance learning and including marine and offshore) – ICorr Level 3 ONLINE

Why apply to this course?

 

The comprehensive and flexible online ‘Train the inspector’ course has been developed to prepare candidates for the ICorr Coating Inspector Level 3 examination. The course is suitable for ICorr level 2 coating inspectors with more than 3 years of coating inspection experience. The Coating Inspection course also includes an additional module in Marine and Offshore Coating.

Level 3 personnel are qualified to:

  • Direct any inspection or test operation for which they are certified;
  • Assume full responsibility for an inspection or test facility and staff;
  • Establish and/or validate work instructions or procedures;
  • Interpret normative documents;
  • Designate the extent of inspection and the particular test methods and procedures to be used.

Level 3 personnel have demonstrated:

  • Competence to interpret and evaluate inspection or test results in terms of existing normative documents;
  • Possession of a scope and level of knowledge sufficient to enable the individual to select inspection methods and tests, and to assist in the establishment of inspection and test criteria where none are otherwise available;
  • A general familiarity with coating materials, fabrics and structures protected by painting and coating, application methods and associated areas;
  • The ability to guide personnel below Level 3.

Course Content

Take a look at our demonstration training units

 

Course Details

60-80 hours of online studying over a maximum 12-month period. A mandatory advanced practical workshop followed by a one day practical and theoretical examination must be attended to acquire the recognised ICorr Coating Inspection level 3 Certificate. Examination dates 

Mandatory one day advanced workshop information and dates

 

Course and Examination Enquiries

For more information including prices and availability please visit our training partner’s website at https://corrodere.com/traintheinspector/icorr-level-3-coating-inspector alternatively you can contact them on: –

  1. +44 (0) 1252 732220
  2. meena@corrodere.com

 

Apply Here