New Sustaining Member – R&W Rail

New Sustaining Member – R&W Rail

R&W provide a comprehensive range of rail, civil engineering, traffic management, environmental and plant specialist services, operating primarily in Highway and Rail environments.   Their founding principle of direct employment and asset ownership ensures they can offer reliable and yet flexible services to all their clients. R&W’s aim is to be “employer and contractor of choice”, a vision which has established their capability of delivering all aspects of project life cycles (plan, design, build, refurbish and recycle). To support this R&W have a highly skilled and motivated workforce of more than 200,  who embrace the company values of being safe, respectful and always delivering. This culture is the “R&W Way” and has helped them develop effective and collaborative relationships with clients, regularly being rewarded for their service and operational excellence.  They have an in-house capability to train their workforce to achieve ICATS accreditation and have an in-house ICorr Paint Inspector to ensure the works are carried out to the client’s specifications.  They strive to continually improve what they do and work hard at achieving recognised business standards, holding numerous accreditations (i.e. ISO 9001//18001/44001/14001).

New Sustaining Member – HDM Tubes Ltd

New Sustaining Member – HDM Tubes Ltd

HDM Tubes Ltd., based in Cardiff, is a leading manufacturer of spirally welded LD pipes for the foundation and construction industries.   The mill layout has been specially designed to roll heavy gauges up to 32 mm and long lengths up to 45 m.  The Cardiff factory is equipped with shot blasting/painting, clutch/interlock welding, facilities for combi-wall applications, and also has a workshop for any other necessary attachments to meet custom-made pipe designs.

As the only spiral pipe producer of heavy gauge and long pipes in UK, HDM Tubes Ltd. is able to provide short lead times for specific projects and customer needs.  Taking advantage of their base at Cardiff Docks, they are able to ship long and heavy pipes directly to vessels, barges and trucks and can serve around the UK, Ireland and Europe.

HDM Tubes Lltd is also certified with quality, health and safety and environmental management systems registered to ISO 9001, ISO 14001 and ISO 18001.

The President Writes …

The President Writes …

This month has seen the long awaited ‘buried pipe’, which will allow candidates on the CP Course to carry out testing of instrumentation on a live piece of buried pipe, installed at the IMechE Training facility in Sheffield.     This has been a labour of love and frustration for many over a long period of time, but it is also a symbol of what can be achieved when two organizations with some very determined people put their heads together.  This will bring an enhanced learning experience for people attending CP training in Sheffield.  There has also been much time and effort put in by many in recent months looking at how we can be the best in class at the training we offer.

The other wonderful news this month is that we are now in possession of our new home, 5 Saxon Court Northampton.  My sincerest thanks go to Trevor Osborne for the hard and diligent work that he has put in to make this possible.  It has been the wish of Council for some time to see us in a permanent location and that has now been realised.  There are some changes that need to be made to the property, but we are looking at a move in date of November, and we would welcome a visit from you all.

I was lucky enough this month to have a tour of the Sir David Attenborough polar vessel just prior to the hull being launched, but the weather made it feel like a shipyard in Singapore rather than Birkenhead!

We have held productive PDTC and Council meetings, there is good progress being made in our efforts to provide up to date and interesting new courses, and you should see the results of this in coming months.  Council was as ever a lively debate with good progress being seen by the Membership committee.   I would like to take this opportunity to thank Bob Crundwell for his years of service to the Institute as a Past President and active role in the institute, Bob has decided to stand down from Council and we wish him all the best.

I hope you all continue to enjoy the summer.

Sarah Vasey, ICorr President

The Fundamentals of Corrosion

The Institute of Corrosion is planning to run a Fundamentals of Corrosion course in Cumbria presented by Dr Jane Lomas.  The course will be based on practical information and hands-on examples as well as relevant background theory.   Attendees on the course will be given a wide ranging introduction to all the major aspects of corrosion engineering.

Successful completion of the course and the associated examination will required for obtaining Professional membership of ICorr for those without either formal qualifications in corrosion or the relevant time experience.

Who is the course for;

The course will be suitable for engineers, paint inspectors, designers, technicians and scientists wishing to expand their career opportunities into the corrosion field or wanting to broaden or refresh their knowledge of corrosion in general.

Civil, mechanical, chemical and naval engineers will find the course aids their ability to assess potential or actual corrosion situations and to be able build anti-corrosion measures and strategies into their projects.  It will also help to understand the mechanisms and causes of common premature failures.

The course will take place over a 5 day period in a classroom format; four days being talks and practical sessions and the fifth day being a short review and the examination.  There will be opportunities to ask questions at all times during the course.

Course Content;

The course will include:

  • Corrosion of common metals.
  • Basic corrosion science.
  • Common corrosion mechanisms; galvanic, crevice, pitting, deposition, corrosion under deposit/lagging, stress corrosion and cracking.
  • The electrochemical series and its practical uses.
  • Methods for preventing or managing corrosion, including Inhibitors/passivation.
  • Introduction to cathodic protection.
  • Surface preparation challenges, paints & coatings.
  • Corrosion and environmental conditions.
  • Material selection & design.
  • Corrosion testing and monitoring.

Course Presenter;

The course will be presented by Dr Jane Lomas (FICorr).

Jane is an experienced corrosion & coatings engineer at Amtec Consultants Ltd with a multi-disciplinary background. She has over 30 years practical experience of marine corrosion and building coatings issues, from project design, through new building to guarantee claims; ongoing coating maintenance problems and repair issues.

She also works on a global basis with failure investigations and product liability claims in the automotive, industrial, aerospace and water treatment industries as an investigator and problem solver.

Jane manages multi-company projects for both R&D purposes and claims cases and also runs the laboratory at Amtec.

  • Fellow – Institute of Corrosion (FICorr)
  • Honorary Secretary, Trustee and Council Member of ICorr.

Further information on the course can be obtained from the Institute of Corrosion: admin@icorr.org or david@icorr.org

 

 

Corrosion Engineering Division

CED Working Day and Symposium on Atmospheric Corrosion in Industrial Applications
The tenth CED Working Day was held on Tuesday 24 April 2018 at The Centre, Birchwood Park, Warrington. Some thirty-nine delegates were welcomed by Chairman, Nick Smart. In addition, there were several exhibition stands, a visit to Wood plc test facilities, and CED Working Group Meetings.

Professor Stuart Lyon (University of Manchester) gave an introductory lecture entitled, ‘Introduction to atmospheric corrosion – mechanisms etc’. Given the large surface areas of materials exposed to the atmosphere, annual losses due to corrosion in the UK are in the order of several hundred million pounds. The atmosphere is one of the most common natural environments to which materials are exposed, however unlike most environments, the atmosphere does not provide constant exposure conditions. Thus, the corrosion rates of similar specimens exposed to the atmosphere have poor reproducibility. The main constituents of the atmosphere are essentially constant, however minor components can affect corrosion rates significantly, for example, the concentration of water vapour can vary over a large range. Three primary sources of air pollution are, volcanic action, vegetation and animal wastes, however sea-spray and dust from the earth also need to be considered. Pollutants are also classified as gaseous, particulate or aqueous (dissolved in rain) and man-made atmospheric pollution includes that from burning fossil fuels, chemical processing, sewage treatment and farming. Stuart went on the explain climate effects, macroclimates and microclimates, and that ISO 9223 provides a classification scheme for ranking pollution in a particular climatic location, which is based on the deposition rates of SO2 and Cl-. Atmospheric corrosion only proceeds when sufficient water is present to solvate ions generated during anodic and cathodic reactions. By definition, at 100% Relative Humidity (RH) condensation occurs. Metal corrosion cannot occur unless there is sufficient liquid water on the surface. The time during which RH exceeds a critical value is defined as the ‘Time of Wetness’ (TOW) and ISO 9223 also includes a scheme for ranking a particular climate in terms of TOW (hrs/year). The standard also provides a classification scheme for the ‘Corrosivity’ of an environment, based on the expected annual corrosion rate over 1 year. Finally, specific mechanisms relating to the atmospheric corrosion of iron and zinc were outlined.

Richard Bewell (Engineering Manager, BAM Nuttall) gave a presentation on, ‘Atmospheric corrosion prevention in the windpower industry’. The ‘Blyth Demonstrator Project’ (located about 5.6 km off the North-East coast of England at a water depth of about 38m) has five 8.3 MW turbines, capable of supplying power to 34,000 homes, with a design life of 26 years, and commercial operations commenced in October 2017. The design is essentially a monopole with a heavy reinforced concrete base approx. 30m diameter x 1.1m deep and using over 1,800m3 of concrete with over 500 tonnes of steel reinforcement per foundation. The towers comprised steel shafts, 60m high x 7.5m diameter with a wall thickness of 70mm. For protection in the splash zone and for atmospheric exposure, Norsok C5M specification was applied.

Cristano Padovani (Wood plc) addressed, ‘Modelling the corrosion behaviour of intermediate level radioactive waste (ILW) containers during prolonged exposure to atmospheric conditions’. The stages involved in waste management are, immobilise and containerise, interim storage, transport to an underground geological disposal facility (GDF) and utilise man-made and natural barriers to prevent/minimise release. The atmospheric corrosion of the stainless steel containers, used for medium- and long-term storage , is induced by chloride-containing aerosols, generated by hygroscopic chloride salts on surfaces. Temperature and relative humidity (RH) determine electrolyte characteristics (e.g. concentration) and hence, corrosivity. The factors investigated were, environmental and corrosion monitoring, pit initiation, and mechanistic and SCC initiation studies. Temperature and humidity fluctuate daily and have seasonal variation for above-ground facilities, but are typically more stable underground. It was found that MgCl2 and CaCl2 were inherently much more corrosive than NaCl (especially with regard to SCC), and that high enough RH can lead to dilution of corrosive ions and prevent initiation or cessation, and that SCC initiation was severely inhibited by induced surface compressive stresses. Mechanistic studies in bulk solution indicated that, under polarization, follow kinetics such as, D = A tn, where D=pit depth, A= a constant, t= time and n is an exponent. Furthermore, it was found that SCC propagated very fast after an ‘apparent’ incubation period. A Parametric model – Atmospheric Corrosion of stainless Steel in Stores (ACSIS) was developed, comprising three basic modules, environmental (is the surface wet ?), corrosion initiation (does corrosion initiate ?), and corrosion propation (if so, how much damage results ?). The Laycock-White-Krouse (LWK) mechanistic model was described and used to relate pit depth as a function of time for high RH’s and different chloride surface concentrations.

‘Assessment of corrosion under insulation and engineered composite wraps using pulsed Eddy-current techniques’ was described by Bill Brown (TRAC Oil and Gas Ltd). This presentation touched on the NDT aspect of atmospheric corrosion. Corrosion under insulation (CUI) is possibly the greatest unresolved asset integrity problem in industry. Current methods for measuring wall thickness under insulation, without removing it, all have severe limitations. In total, there are three eddy current devices available for this. However, TRAC evaluated the recently-introduced ‘Lyft’ – a high-performance reinvented pulsed eddy current (PEC) technique) and also Maxwell produced PEC equipment. Although radiography may also be used, it is generally limited to 6 in. diameter pipework, and computer-aided tomography has also been used. A combined PEC and digital radiography technique was developed by Shell in the early 1990’s. A simplified working model of PEC was described and that the concepts of footprint and average area of a probe are key to understanding what a PEC can and cannot detect. The footprint is affected by the size of the probe and the distance from the component or structure being examined from the probe. The footprint is of utmost importance, as it is the decisive factor in determining the dimension of the inspection grid, edge effect and the smallest volume or defect. Nine case histories using this technique were then given.

Professor Geraint Williams (Swansea University) addressed, ‘Preventing corrosion of galvanized steel in the non-chromate age’. The EU has set a ‘sunset’ date of 2019 for the replacement of hexavalent chromium corrosion inhibitor. The problem of how the performance of new inhibitor pigments could be quantified under atmospheric corrosion was raised. Methods included, external weathering, accelerated salt spray and EIS (immersion in corrosive solutions). Assessment of organic coatings carried out at Swansea University included the use of a Scanning Kelvin Probe (SKP). This involves the use of a reference electrode in a test chamber, without physical contact – i.e. not in a ‘bulk’ electrolyte, providing a ‘spatial map’ of corrosion potentials. Ion exchange materials are promising chromium-free anti-corrosion pigments, in which ‘smart release’ inhibitors are only released whenever a corrosive environment is encountered. ‘Hydrotalcite’ is a layered double hydroxide of general formula Mg6Al2CO3(OH)16.4H2O. The carbonate anions that lie between the structured layers are weakly bound giving the material anion exchange capabilities. Inhibition arises by the sequestered aggressive Cl- ions being exchanged for less aggressive ions. The action of this ion exchange mechanism was studied on hot-dip galvanized steel by SKP. The use of benzothiazole inhibitors as a non-chromate alternative was also mentioned. The mechanism is to stifle the underfilm oxygen reduction reaction. Finally, the next generation of Zn-MgAl alloys for galvanizing was introduced. These are very heterogeneous, comprising a three phase material.

John Broomfield receiving the Paul McIntyre Award from Sarah Vasey.

John Broomfield receiving the Paul McIntyre Award from Sarah Vasey.

The second annual Paul McIntyre Award was presented at the meeting to John Broomfield, by Sarah Vasey, President of The Institute of Corrosion. This Award is presented to a senior corrosion engineer, over the age of 30, who as well as being a leading practitioner in his field, has advanced European collaboration and international standards development (in keeping with Paul’s area of interest). Recipients must have established an international reputation in the field of corrosion engineering. John had originally a background in spectroscopy and applied these studies to monolayers on steel surfaces. Later, he worked on problems with PWR reactors in the UK, later transferring to Taylor Woodrow and subsequently carried out work on concrete pre-stressed pressure vessels. Some very interesting slides on the pioneering work he was involved with were shown.
At the close, Nick Smart thanked the speakers, the delegates for attending the working day, Wood plc staff for the conducted tours of facilities, and the exhibitors, for a successful and enjoyable event.
Editor’s note: Text copyright: David Nuttall, released under CC-BY-NC.